

gFEX Connectivity

Murrough Landon 23 April 2014

Notes and CaveatsNumerologyConclusions

•(And various backup slides used as input)

Notes

- •Check all the sources of fibres to the FEXes
 - •LAr DPS in all regions, Tile via JEM and Tile in phase 2
- Look both at baseline 6.4 Gb/s and ~10 Gb/s options
 - •NB fewer jFEX fibres at high speed
 - •(But assume same number of eFEX fibres no BCMUX)
- •Assume phi ring jFEX in both cases
 - •Though this option is not carefully checked at 6.4 Gb/s
 - •Phi ring jFEX needs less fanout at high eta
 - •But not yet checked in detail

•CAVEAT

- •Plenty of room for mistakes!
 - •I have not completely updated my spreadsheets with all the changes consequent on choosing the phi ring jFEX (especially at 6.4 Gb/s)

Summary Table: 6.4 Gb/s

	Calo Region	Fibres to eFEX	Fibres to jFEX	Fibres to gFEX	Spare fibres	Coverage (eta*phi)	Supercells & Towers	Need splitter?
Obtion Obtion	EM<2.4	36	8	1	3	0.8*0.4	320 & 32	No
	EM>2.4 (separate)	20	8	4?	16?	0.8*1.6	160 & 32	No
	HEC (separate)	12+14*2	18*2+6	8?	0	1.7*1.6	192	Yes: 1->3 if gFEX?
	HEC+ EM>2.4	10*2 +10	12*2 +4	6?	2?	1.7*0.8 0.8*0.8	80 & 112	Yes
	FCAL	0	24	4?	20?	1.7*1.6	192	No
	Tile/JEM (BCMUX)	12?	8?	2	?	0.8*0.4 0.8*0.6	32 48	Yes?
	Tile/ROD	20	16	2	?	Assume 1.6*0.4	64	No
	Murr	ough Landon,	QMUL	3		L1Calo		

Summary Table: 10 Gb/s

	Calo Region	Fibres to eFEX	Fibres to jFEX	Fibres to gFEX	Spare fibres	Coverage (eta*phi)	Supercells & Towers	Need splitter?
I	EM<2.4	36	6	1	5	0.8*0.4	320 & 32	No
ا s) <mark>بو</mark>	EM>2.4 eparate)	20	8?	4?	16?	0.8*1.6	160 & 32	No
ð (s	HEC eparate)	18	12+10*2	8?	~0	1.7*1.6	192	Yes if gFEX
Option 1	HEC+ EM>2.4	12 +10	15 +4	6?	~1	1.7*0.8 0.8*0.8	80 & 112	NO!
	FCAL	0	16	4?	28?	1.7*1.6	192	No
ד (ו	ile/JEM BCMUX)	6	6	2?	?	0.8*0.4 0.8*0.6	32 48	Maybe if gFEX?
Т	ïle/ROD	12	12	2	?	Assume 1.6*0.4	64	No
	Murr	ough Landon,	QMUL	4		L1Calo		

Conclusion

•Can provide gFEX outputs from LAr DPS & Tile JEM

•Most congested for HEC

•Prefer DPS FPGAs combining HEC and EM>2.4

•Adding gFEX increases complexity

Adds/requires extra optical splitting in some places
Possibly need 1->3 splitting from HEC at 6.4 Gb/s?
Forces eFEX and jFEX outputs to have same geometry => implication for FEX layout?

•All DPS/Tile output fibre bundles have a fibre to gFEX

•Even less likely to be able to use off the shelf fibre rebundling

•But no showstoppers...?

gFEX Inputs Requirements(?)

- •One fibre per 0.8*0.4 in eta*phi (per layer)
 - •Corresponds to one LAr DPS FPGA (|eta|<2.4)
 - •Eight 0.2*0.2 jet elements
- •Roughly 16*8*2=256 fibres for |eta|<3.2 (EM+Had)
 - •Few extra for FCAL
 - •No on board fanout => 60-80 inputs per FPGA
- •Independent of link speed
 - •At high speed just add more data (resolution & coordinates)

LAr DPS Outputs to gFEX (1)

•EM Barrel and standard EM Endcap (|eta|<2.4)

- •One DPS FPGA covers 0.8*0.4 = 32 towers, 320 supercells
- •48 output fibres: single 48 fibre bundle
- •Up to 36 fibres to eFEX, 8 to jFEX: >1 spare for gFEX
 - •Down to 6 jFEX fibres at 10 Gb/s (with larger jFEX environment)

•Forward EM Endcap (2.4</br>

- •One DPS FPGA covers quadrant: 32 towers, 160 supercells
- •Original calculations assumed eta slice jFEX
- •Up to 20 fibres to eFEX, 16 to jFEX: >1 spare for gFEX
- With phi ring jFEX this region needs no fanout? (Check!)
 If so, only need 8 fibres to jFEX (at most): masses of spares
 Further reduction in jFEX fibres at 10 Gb/s

LAr DPS Outputs to gFEX (2)

•HEC

- •One DPS FPGA covers quadrant (1.6 in phi): 192 towers
- •Original calculations assumed eta slice jFEX
- •Up to 20 fibres to eFEX, 24 to jFEX
 - •NB almost all those fibres need additional 1:2 splitting
- •But still have a few spare fibres for gFEX
 - •But not enough?
 - •Unless eFEX/jFEX fibres have more than 1:2 subsequent splitting?
- •With phi ring jFEX the >2.4 region needs no fanout? (Check!)
 - •If so, need fewer fibres to jFEX but not enough to avoid any splitting

LAr DPS Outputs to gFEX (3)

•Combined DPS for HEC+EM>2.4

- •FPGA covers octant (0.8 in phi) all HEC and EM>2.4 region
- •Better use of spare fibres cf separate DPS for EM>2.4
- •At 10 Gb/s can just avoid any further splitting
 - And still room for a few fibres to gFEX
 - My preferred option
- •Could further reduce fibres by summing EM+Had for eta>2.4
- •NB there is an alternative proposal (Stefan Simion) to combine EM>2.4 with the standard EMEC region (1.6-2.4) FPGAs

LAr DPS Outputs to gFEX (4)

•FCAL

- •Each FPGA covers half of phi (one side)
- Originally imagined 48 fibres per FPGA
 Fanout to two adjacent jFEX modules in eta slice jFEX scheme
 8 cells/fibre (as for jFEX towers) allowing ~15 bits/cell
- •No spares!
- •Options:
 - •(a) With 10 bits/cell, jFEX fibre count reduces to 32
 - •(b) With phi ring jFEX no need to fan out FCAL cells => 24 fibres
- •Summary: can have spare outputs for gFEX fibres

Tile Outputs to gFEX

•Phase 1: via JEM

- •One FPGA covers either 0.8*0.4 or 0.8*0.6 in eta*phi •Irregular geometry
- •Inputs are BCMUXed: assume same for outputs
 - Saves factor two in number of fibres
- Probably one minipod per FPGA but might squeeze on two?
 Either 12 or 24 output fibres per FPGA
- Up to ~9 fibres to eFEX, ~8 to jFEX (varies per FPGA)
 Four different contents with masses of fanout due to ugly geometry
- •Expect 1 or 2 gFEX fibres (varies per FPGA)
- •OK with optical splitting (if only one minipod per FPGA)

•Phase 2: from new Tile electronics

•Presumably design it with gFEX in mind if needed