

Murrough Landon 22 January 2013

- Overview
- •Optical Patch Panel
- Common ROD Daughter Card
- •ATCA Hub Module (TTC/Busy/Control)
- •IPCM Interface
- ATCA Crate Installation
- •Firmware and Software
- Schedule for Common Items
- L1Calo Work Packages







Murrough Landon, QMUL

TDAQ IDR



### Overview

#### Common infrastructure for eFEX and jFEX

•All the colourful parts of this diagram...



Murrough Landon, QMUL

TDAQ IDR



# **Optical Patch Panel**

### •Interface between LAr DPS or Tile and the FEXes

- Mapping onto regular eta phi space for sliding windows •Regrouping fibres into ribbons destined for eFEX vs jFEX •Eg fine granularity EM supercells for eFEX, 0.1\*0.1 EM towers for jFEX
- Additional passive optical splitting where needed
  - •LAr DPS and Tile interface mostly provide enough copies of signals
  - •But (probably) the HEC needs additional duplication
    - •We need two copies to adjacent eFEX modules plus two copies to adjacent jFEX modules

#### •Implementation as sets of "octopus" fibre ribbons

•Needs very detailed design of the mappings, then just buy them...





# **Rear Transition Module**

### •Brings bundles of optical fibres to ATCA Zone3

- •Rear transition module just a passive mechanical support
- •Fibres grouped into multiway optical connectors (72 fibres)
- •eFEX/jFEX modules will have four such connectors





# DPS/Tile to FEX Mapping

- Detailed mapping to FEXes needs to be defined
  - •Sliding window algorithms need regular eta phi grid
    - •May need special handling of some areas eg barrel/endcap boundary
  - Discussions started with LAr
    - •Many details to be sorted out...
    - •...also with FEX engineers





Design study for "worst case" mapping to eFEX module (0.5\*0.5 environment)





# **ROD Daughter Card**

#### Interface to DAQ

- Each eFEX and jFEX module acts as its own ROD
  Needed for phase 1, must compatible/upgradeable for phase 2
- Implement ROD functionality as a daughter card
  Common hardware for eFEX and jFEX, but different firmware needed
- •Emulate current Slink protocol for phase 1
- •Can change protocol for phase 2 or replace daughter card
  - •But must make sure all the necessary phase 2 signals are tracked to it!



Murrough Landon, QMUL



# Content of Readout to DAQ

### •L1Calo FEXes (and LAr DPS) are DAQ subdetectors

- •Essential to read out enough to verify operation of the trigger
- Traditional L1Calo model: readout all inputs and outputs
  - •Some duplication: output of PPM is input to CPM etc
  - •But data volume reduces dramatically with each pipeline step
- •We will certainly read out the outputs of FEX algorithms
- •But replicating DPS output is a lot of data
  - •So we are thinking about sending checksums from DPS to FEXes
  - •Then only readout FEX input from DPS if checksums are wrong •Up to some bandwidth limit
- •NB this assumes the LAr DPS data is read out to DAQ
  - •DPS readout is still being discussed (even one copy is quite a lot)
- •L1Calo view is that:
  - •BCID result for each supercell is mandatory for every event
  - •ADC samples desirable every event (mandatory on day 1, reduce later?)



# ATCA Crates

- •Both eFEX and jFEX will be implemented in ATCA
- •We will follow the evolving ATLAS ATCA standards
  - •ATLAS ATCA recommendations drafted not yet final?
  - •In some cases multiple options are suggested

### •We expect to have:

- •14 slot crates, vertical air flow, two crates per rack
- •LAPP IPMC daughter card
- Hub module function for ethernet, TTC, busy
- •Module configuration and control via IPbus (Ethernet/IP)
  - •Firmware and software package developed by CMS
    - $\mbox{\cdot} Interest$  in this also from other ATLAS subdetectors (LAr) and LHCb



# ATCA Control Hub

#### •ATCA crates need one (or two) hub modules

- Several undemanding functions
- •Implement in low end FPGA, possibly on a daughter card
  - •Capability present on all eFEX/jFEX modules but only used in hub slots
  - Some functions could be tested on UK High Speed Demonstrator

### •Ethernet switch

- Route ethernet to other modules in the crate
  For high level module control (eg configuring the trigger) via IPbus
  TTC hub
  - •One module per crate acts as TTC hub
    - •TTC signals sent over ATCA zone 2 backplane
  - •Alternative possibility: TTC fibre to each module
- Busy aggregator
  - •Collect BUSY signals from ROD daughter cards in the crate



# IPMC (DCS Interface)

### •ATCA crates need low level IPMC controller

- •Low level module control, ie switching on and off
- •Collect voltage/temperature information via I2C buses
- This should be the interface to DCS
- •LAPP have produced a suitable daughter card for this
  - Very low profile miniDIMM minimal space impact on board
  - •Being recommended as the ATLAS standard
  - Available in the summer





# **Rack Space in USA15**

#### •L1Calo and LAr need 3 or 4 racks in USA15

•Should be OK: but need to (re)move less critical equipment





### Firmware

#### •ROD daughter card

- •Needs firmware for both eFEX and jFEX data formats
- •For the current L1Calo ROD, firmware was a major project

#### Control hub

• Smaller body of firmware needed here too

#### • IPMC interface

•Hopefully not much to do here?



### Software

#### Online Software

- New ATCA modules will be included in L1Calo online software
  We already need to do this by phase 0 for L1Topo
- Preliminary scheme outlined
  - •Replace CERN VME driver and L1Calo "HDMC" (Hardware Access) by IPbus software suite developed by CMS (comes with matching firmware)
  - •Keep higher level "module control" software layer in L1Calo
  - •Run control layer will see common interface for VME/ATCA modules
- •We also need bit level hardware simulation (test vectors)

### •Offline Software

- •New modules also need simulation in offline software
- •Used to validate trigger with P1/TierO monitoring
- Simulation Studies
  - •Continuing work to optimise the design parameters



### Specification starts now/soon

- •Generally follows specification of the main modules
- •But must all be defined by the time of the TDR

### •Effort

•Estimate 16 FTE over 2013-2018 for common items (WP3&5)



15

TDAQ IDR

Murrough Landon, QMUL



# Summary & Steps to the TDR

### •Initial design for common infrastructure exists

Detailed specification work will start soon
Mostly following the specification of the main modules

### •Before the TDR we need to

- •Finalise mapping details soon for eFEX/jFEX design
  - •Depends on decisions about BCMUX, link speeds, jet environment, etc •Iterative process involving LAr and L1Calo constraints - started but needs to converge

#### •Continue tests on optical links

•Viable link speeds, passive optical splitting etc in optical patch panel

Agree readout policy with LAr



# L1Calo Work Packages

|               | Work Package                                              | Effort Required 2013-2018/FTE |      |       |
|---------------|-----------------------------------------------------------|-------------------------------|------|-------|
|               |                                                           | eFEX                          | jFEX | Total |
| WP1           | eFEX module (h/w and f/w)                                 | 19                            | -    | 19    |
| WP2           | jFEX module (h/w and f/w)                                 | -                             | 17   | 17    |
| WP3           | ROD module (h/w and f/w)                                  | 7                             |      | 7     |
|               | Hub module (h/w and f/w)                                  | 5                             |      | 5     |
| WP5           | Optical plant                                             | 2.5                           | 1.5  | 4     |
| WP6           | Hadronic input logic (h/w and f/w) assumes option 3       | 5                             |      | 5     |
| WP4           | Test module (h/w and f/w)                                 | 10                            |      | 10    |
| WP7           | DAQ and online s/w                                        | 11                            | 8    | 19    |
| WP8 &<br>WP10 | Offline s/w and performance studies and algorithm studies | 9                             | 9    | 18    |
| WP9           | Integration, installation and commissioning               | 15                            | 6    | 21    |