

gFEX Functionality via jFEX?

Murrough Landon (On behalf of gFEX hardware review panel) 5 December 2013

- Introduction
- •Phi ring jFEX
- •Pileup calculations
- •Fatter jets (in phi and eta)
- Summary

gFEX Hardware Review Panel (1)

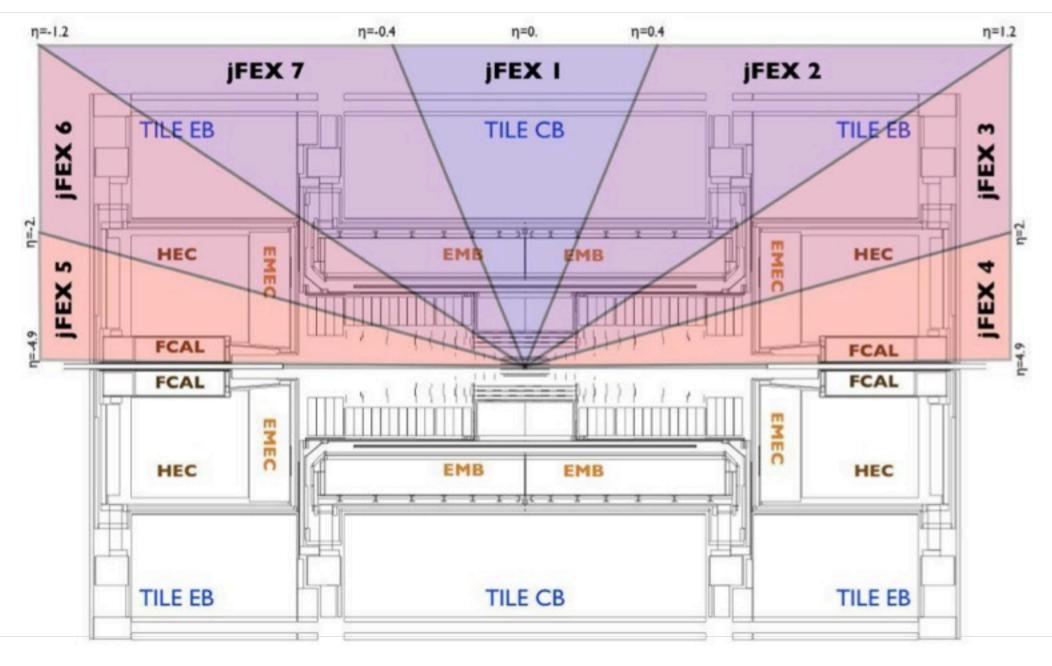
•Composition:

•Ian Brawn, Weiming Qian, Murrough Landon, Sam Silverstein, Uli Schaefer, Eduard Simioni, Stefan Rave, Esteban Fullana Torregrosa

•Three meetings so far:

- •https://indico.cern.ch/conferenceDisplay.py?confId=283506
- •https://indico.cern.ch/conferenceDisplay.py?confId=283766
- •https://indico.cern.ch/conferenceDisplay.py?confId=285494
- •Useful email interactions with physics experts
 - •David Strom, Michael Begel, Alan Watson, Jim Linneman

- Scope
 - Can the gFEX functionality can be implemented in the current baseline system ?
- Fat jets
 - Target: 2.0 x 2.0 (1.8 x 1.8 = gFEX TDR)
 - jFEX & jFEX—Topo solutions
- Pile up
 - p parameter
 - φ rings, 0.2 in η
 - jFEX & jFEX-Topo solutions
- Requirements for the above
 - Bandwidth: in/out modules, between FPGAs
 - Link Speed
 - Mapping
 - Constraints placed on algorithms


- Play devils advocate and try to avoid gFEX hardware
 Can requested gFEX functionality be provided by jFEX?
- Physics panel investigating baseline jFEX+L1Topo
 - •With 6.4 Gbit/s links the maximum jFEX jet size is 0.9*0.9
 - •Fat jets only possible by composition of 0.9*0.9 in L1Topo
 - •Pileup subtraction at L1Topo using mean of Et medians in several eta strip oriented jFEX modules
- •Hardware panel has looked at extending the baseline
 - Suggest phi oriented jFEX with ~10 Gbit/s links
 - •Maximise jet size
 - •Use data sharing between FPGAs for local pileup subtraction

- TDR jFEX assumed to cover eta strips (0.8 in phi)
 Same geometry originally assumed for higher speed option
- Now looking at jFEX modules oriented as phi rings
 - •Input links at ~10 Gbit/s (~200 fibres/module)
 - Seven jFEX modules in the system (cf eight for eta strips)
 Module core area: 0.8 in eta * all phi (larger eta at the ends)
 - •Four big FPGAs per module
 - •FPGA core area 0.8*1.6 in eta*phi
 - •Environment +/- 0.8 at 0.1 granularity
 - •Schemes for additional "frame" of 0.2*0.2 jet elements
 - •Maximum jet size 2.2*2.2 in eta*phi sliding by 0.2
 - •Pileup subtraction on jFEX module
 - •Needs exchange of data between FPGAs

Phi Ring jFEX Layout

Murrough Landon, QMUL

6

TDAQ

Calculating Pileup: Phi Ring jFEX

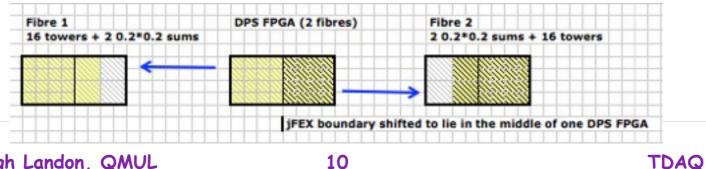
- •Ideal case (gFEX): whole phi ring in one FPGA
 - •But even phi ring jFEX module still splits phi into 4 FPGAs
- Share pileup estimates between jFEX FPGAs
 - •Bandwidth available on low latency 1 Gbit/s links (25 bits/BC)
 - •Maximum 240 links/FPGA of which ~140 already required for configuration/control (via IPbus), merging results to L1Topo, handling HEC overlap, extended environment in eta (see later)
- •Use 42 links per FPGA (7 links * 2 ways * 3 FPGAs)
- •Can send one 12 bit pileup estimator per 0.2 in eta
 - •Either median Et, thresholded SumEt or (DavidS) histogram?
 - •If possible just use the core 1.6 in phi per FPGA •Using full 3.2 phi environment available in each FPGA costs 1 BC latency penalty
 - •Combine estimators (mean?) from each FPGA to derive rho
 - Subtract pileup from jets and missing Et components
 - Send pileup subtracted jets and missing Et to L1Topo

Murrough Landon, QMUL

- •10 Gbit/s jFEX offers 1.7*1.7 jets sliding by 0.1
 - There is 0.8 eta and phi environment around each core tower
- •NB jFEX with 0.2 sliding windows offers 1.8*1.8 jets
 - •2*0.8 environment around each tower + core 0.2
 - •And gaussian weighting calculations can still be done at 0.1
 - [Reminder: only if we are allowed to assume 10 Gbit/s links]
- •Is there any chance of even fatter jets?
 - •Consider schemes for fatter jets in phi or eta
 - •Only sliding by 0.2 (surely no bandwidth for 0.1)
 - •Adding 0.2 each side in both eta and phi gives 2.2*2.2 jets
 - Different solutions needed for eta and phi:
 •eta: squeeze more data onto fibres and reorganise mapping
 •phi: share 0.2*0.2 sums via additional low latency links between FPGAs

Phi Ring jFEX Diagram

7EX5 -3.2 -2.4 -3			jFEX6			JFEX7		jFt	jFEX1		jFEX2		(FEX3			jFEX4		
			-2.0 -1.6		-1	-1.2 -0.8 -4		0.4 0.0		0.4 0.8 1.: I I I		1.2	2 1.6 2.0			2.4 3.2		
Two fibres (one copy)								FPC	A 1					DPS	PGA			
					14	1.2*0.2	sums							Fibre				
								FPO	A 2									
					ients							ans.				-		
					les elem							Jer elem						
					10.0							2-0.2						
					yer of 0			FPC	A 3			ABC D						
					atra la							atra la						
					14	2*0.2	sums									-		
								FPO	5A 4									
FCAL		Endcap		0		Et	Barrel	B sectors in		T	e		0		H 0441	EC		FCAL
Murrough L		0441 DMU		41				1441 si 9	percells					441	0441			0

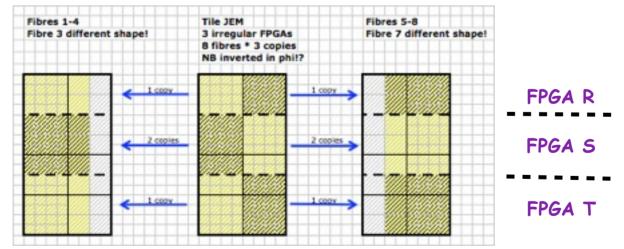

Fatter Jets in Eta

•LAr DPS FPGAs cover 0.8*0.4 in eta*phi (central EM)

- •Original idea for 10 Gbit/s: two fibres covering 0.8*0.2
- •16 tower/fibre: 11(13) bits/tower at 9.6(11.2) Gbit/s •Eq 11 bits allows 0-255 GeV in 128 MeV steps or 0-511 GeV in 250 MeV steps

Suggestion for fatter jets:

- •Fibres cover 0.4*0.4 in eta*phi
 - •Shift core jFEX coverage by 0.4 to span centre of DPS FPGAs
- Squeeze n.bits/tower and add two 0.2*0.2 sums from the other half of each FPGA (ideally at 11.2 Gbit/s)
 - •16 * 12 bits/tower + 2 * 12 bits/sum = 216 bits + 8 bit CRC = 224 bits
 - •Sacrifice any ideas of special Ex/Ey/E sums per FPGA on these fibres?
- Can have 2.2*1.8 (eta*phi) jets sliding by 0.2


Murrough Landon, QMUL

Phi Ring jFEX: Tile Inputs

•Phase 1

- Division of JEM towers into FPGAs is awkward!
- •Ugly solution is possible with some 0.4*0.6 shape fibres
 - •At phase 1 we have 8 bits/tower BCMUXed => 9 bits for 2 towers
 - •Can easily fit 24 towers per 9.6 or 11.2 Gbit/s fibre
 - •The neighbouring 0.2*0.2 areas would also be 6 pairs of BCMUXed towers in this case •12*9 bits + 6*9 bits = 162 + 8 bit CRC = 170 bits

•Phase 2

- •Require TileCal to commit to 0.4*0.4 fibres ~now!
 - •There may be a latency impact for necessary regrouping...

Phi Ring jFEX: HEC Overlap

•In phi ring, HEC overlap towers are all in two modules

- And required in neighbouring modules as environment
- •(Unlike original eta strip jFEX where all modules suffered a small amount of barrel/endcap transition)

Three approaches for handling this

- (1) Drastic: drop HEC overlap (1.5
 Only jFEX modules where overlap region is in the core get them
 Efficiency loss but in a region where efficiency suffers anyway
- •(2) Squeeze overlap towers onto same fibres as 1.6
 - •Resolution down to 10 bits/tower and 8 bits for 0.2*0.2 sums •20*10 bits + 2*8 bits = 216 bits + 8 bit CRC = 224 bits at 11.2 Gbit/s
 - •Not really an option at 9.6 Gbit/s
- •(3) Send HEC overlap on separate fibres
 - •Need to receive them in separate FPGA and transfer over low speed links
 - •Extra minipod and PCB tracks used on just two jFEX modules

Fatter Jets in Phi

•Share rows of 14 0.2*0.2 sums to neighbour FPGAs

- Sums made from core towers so no latency impact
 1 BC in the shadow of the PMA loopback of environment towers
- •Per FPGA need two rows sent and received
 - Two sums per link (25 bits/BC per 1 Gbit/s link)
 - Total of 28 links if EM+hadronic already summed
 Would need 56 links for EM and hadronic separately: too many?
 - •Certainly 28 links seems viable
 - •Can have 1.8*2.2 (eta*phi) jets sliding by 0.2

•Can use both fatter eta and phi schemes

- Maximum jet size up to 2.2*2.2 sliding by 0.2
 Core 1.8*1.8 has 0.1*0.1 granularity (gaussian weighting calculations?)
- •Can still make smaller jets (up to 1.7*1.7) sliding by 0.1

•Provisional hardware panel conclusion

- •gFEX functionality could be done in 11.2 Gbit/s phi ring jFEX •Which could provide even fatter jets (2.2*2.2) than TDR gFEX
- 9.6 Gbit/s links are probably enough but not comfortable
 And HEC overlap towers would need to be on separate fibres
- •But nothing comes for free!
 - •Price includes one or more of: fewer bits/tower, loss of efficiency/resolution for HEC overlap, extra complexity of jFEX PCB, 0.4 phi modularity in Tile at phase 2
- Some questions still to be resolved
 - •Eg, are suggested pileup subtraction algorithms sufficient?
 - •Check bandwidth to L1Topo: fat+thin jets, Et, fat taus, etc?
- •Uncertain link speed means we cannot choose now



Postscript: 6.4 Gbit/s jFEX

- •Hardware panel did not discuss 6.4 Gbit/s options
 - •Assumed maximum 0.9*0.9 jets too far from target 2.0*2.0
- •My personal, last minute, unreviewed thoughts....
 - •Apply fatter eta and phi schemes to baseline 6.4 Gbit/s jFEX
 - Phi ring jFEX at 6.4: FPGA environment 1.6*2.4 in eta*phi
 Provides 0.4 environment each side of 0.1*0.1 tower => 0.9*0.9 jets
 - •Fibres: eight 0.1*0.1 towers (0.4*0.2) + two 0.2*0.2 sums
 - •Maximum jet size extended to 1.8 in eta (sliding by 0.2) [
 - •Add extra 20 links for phi sharing (48 links total)
 - •Share two rows of 0.2*0.2 jet elements in phi at 12 bits/sum
 - •Or three rows by squeezing to 8 bits/sum (quad linear encoding)
 - •Maximum jet size possibly 1.8*2.2 in eta*phi
 - Michael Begel already gave his opinion of non-square jet windows:
 Very ugly, horrible acceptance problems, only do this if we are absolutely desperate
 But maybe as fallback if 10 Gbit/s option doesnt work???

L1Topo Inputs: Phi Ring jFEX

•Proposal for 7 phi ring jFEX modules

•L1Topo FPGA1:

- •48 eFEX EM fibres (2/eFEX module)
- •28 jFEX jet fibres (4/jFEX module)
- •4 muon fibres (NB copied to both FPGAs)
- •No spare fibres

•L1Topo FPGA2:

- •48 eFEX Tau fibres (2/eFEX module)
- •7 jFEX energy sum fibres (1/jFEX module)
 - Assuming a small number of Ex/Ey and Et sums (eta granularity?)
- •4 muon fibres (NB copied to both FPGAs)
- •21 spare fibres (presumably some for fat taus?)
- Could accept more energy fibres/jFEX

Calculating Pileup: Eta Strips

- •Eta strip jFEX must send pileup estimates to L1Topo
 - •Jets and Et sums are sent before pileup subtraction
- jFEX at 10 Gbit/s: 0.8 phi core + 2 * 0.8 environment
 - So each jFEX sees 24 of the total 64 phi bins
 - •Eta range is 82 bins (50 central, 8 forward, 2*12 FCAL1)
 - •Assume 11.2 Gbit/s fibres => 216 data bits per fibre
 - Say 8 bits per pileup estimate => 27 possible values
 Roughly one pileup estimate per 3 eta bins
- •Et components need more bits (~24)
 - Et magnitude and direction above and below threshold
 Another two fibres per jFEX
 - •Viable but L1Topo getting rather full of jFEX fibres
- •Total ~ 6 fibres per jFEX to L1Topo (48 total)

L1Topo Inputs: Eta Strip jFEX

Proposal with 8 eta strip jFEX modules

•L1Topo FPGA1:

- •48 eFEX EM fibres (2/eFEX module)
- •24 jFEX jet fibres (3/jFEX module)
- •4 muon fibres (NB copied to both FPGAs)
- •4 spare fibres

•L1Topo FPGA2:

- •48 eFEX Tau fibres (2/eFEX module)
- •24 jFEX energy sum + pileup estimate fibres (3/jFEX module)
 •Assuming a small number of Ex/Ey and Et sums (eta granularity?)
- •4 muon fibres (NB copied to both FPGAs)
- •4 spare fibres
- •Not much left (fat taus?)

Low Latency Link Count

•Low latency 1 Gbit/s links are used for many things

- •Control and configuration (via IPbus): 25?
- •Result merging to L1Topo: 72
- •HEC overlap (inputs fibres to separate FPGA): 17
- •Pileup data sharing: 42
- •Fatter phi: 28
- •Total so far: ~180
- •Maximum available per FPGA: 240

