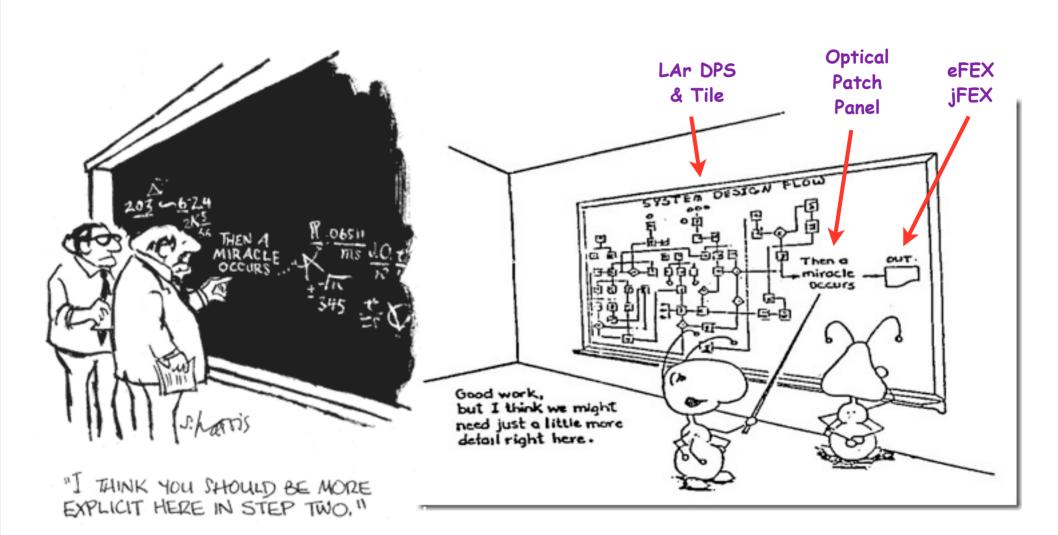


Optical Patch Panel


Murrough Landon 7 August 2013

•Q: Is the optical patch panel viable?

· A: Maybe!

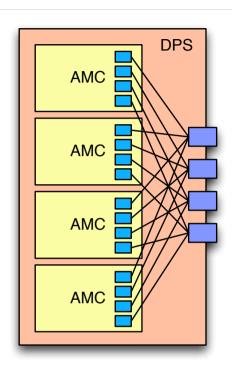
(My) Understanding Until Now...

Aims and Assumptions

Aims (conflicting!?)

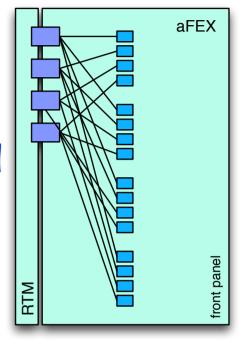
- ·Minimize number of optical connectors en route
- Keep patch panel objects as simple as possible
- ·Limited rack space: minimize size of optical plant
- Tile inputs will change in phase 2
 - Different organisation of fibres in ribbons and/or different grouping of ribbons in multiribbon bundles
 - · Avoid linking Tile PP (and Tile FEX inputs) with others

Assumptions


- •48-way (or 72-way) connectors can be split into four or more (up to 12) 12-fibre ribbons with any desired mapping
- •EM barrel/endcap overlap region handled by DPS
- •eFEX modules shifted by 0.4 in phi vs DPS boundaries
 - Optimise Tile/HEC overlap fibres

DPS Outputs

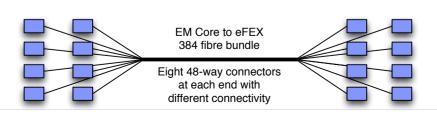
•DPS has four AMCs each with 4 micropods

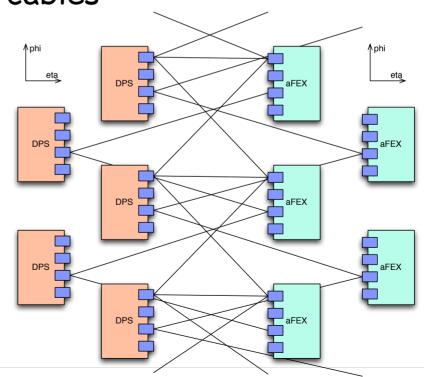

- Total of 16 * 12 fibre ribbons output
 - •NB DPS also has similar number of fibres input
 - · All inputs and outputs via front panel
- •Up to L1Calo to specify the output connectivity
- Group outputs into four 48 fibre connectors?
 - •Maybe front panel space for eight 24 fibre connectors??
- Merge same AMC outputs to one connector
 - Group outputs by destination function
 - •Not by source eta*phi
 - Aim for same AMC to DPS output mapping for all DPS
 - •Including EMEC inner wheel, HEC and FCAL
 - •Unless these regions also need special configuration of input optics
 - •Easier for spares/maintenance
 - May require special firmware loads for EMEC-inner/HEC/FCAL (but thats probably required by the input mapping anyway)

FEX Inputs

- •Four 48 or 72-way input connectors
 - Via RTM and backplane zone 3
 - •RTM currently seen as purely mechanical
- ·Pigtails to mini/micropods on motherboard
 - Mapping to suit board designers

- Minimal set of optical connectors:
 - · Source DPS AMC micropod
 - DPS front panel output
 - FEX backplane input
 - Receiving FEX mini/micropod
- •How many more in the optical plant?

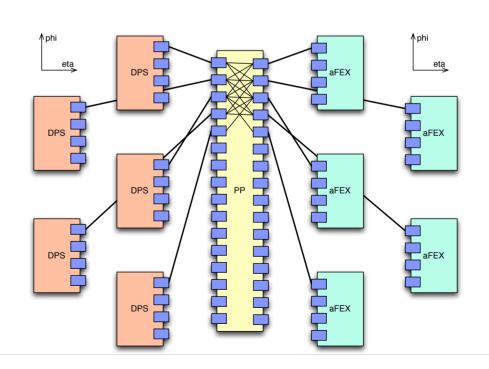



No Extra Optical Connectors!??

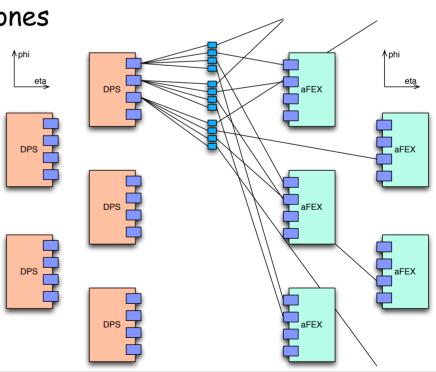
- Octopus bundles directly connecting input to outputs?
 - Fanout in phi (and eFEX corners)
 - •DPS and FEX modules connected in both eta and phi
 - Especially eFEX with its &#**@% corners
 - Need hugely complex cylindrical woven tapestry of links

• Small number of very complex cables

- •eFEX EM core: 6 of 2 or 3 types
- •392 fibre bundle, 8*48-way each end
- •eFEX EM env: single object!?
 - •~1200 fibres, 24*48-way each end
- •eFEX hadronic: also single object?
- •jFEX like eFEX core?
- Seems very impractical!



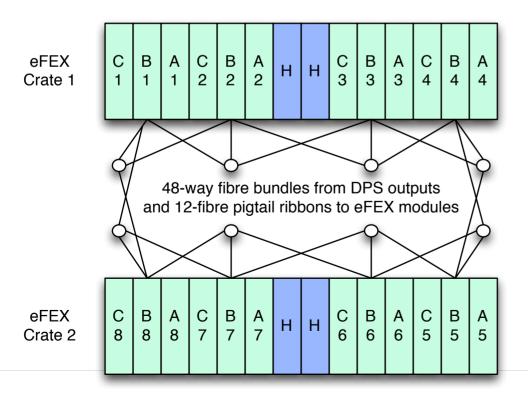
Two Intermediate Connectors

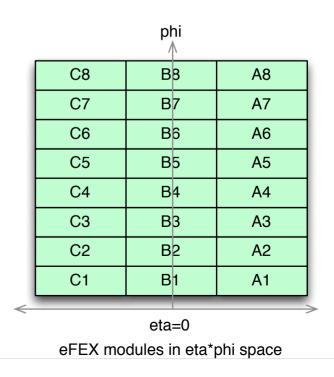

- DPS/FEX output/input bundles direct to PP object(s)
 - ·Possibly a little splitting into pigtails in awkward regions
 - •But otherwise 48 way (or more) fibre bundles
 - Roughly same as previous slide but complexity is in boxes
 - · Again probably very hard to make, small numbers, spares, etc
 - Pro: not laid in cable tray
 - •Con: two extra connectors
 - Still seems impractical

One Intermediate Connector (1)


- •DPS 48-way outputs split into 12-fibre pigtails
- •FEX 48-way inputs split into 12-fibre pigtails
- Connectors between pigtails
 - Result: nest of flying pigtails
 - More exposed fibres fragile?
 - But not too hard to replace broken ones
 - Rough numbers
 - •eFEX EM core: 96 of 2 or 3 types
 - •eFEX EM env: 24 of 1 or 2 types
 - ·eFEX hadronic: similar
 - •jFEX: 8 or 16 of a few types?
 - Many 12-fibre ribbons half used or less
 - •Few each of a few types for:
 - •HEC, FCAL, EMEC inner wheel

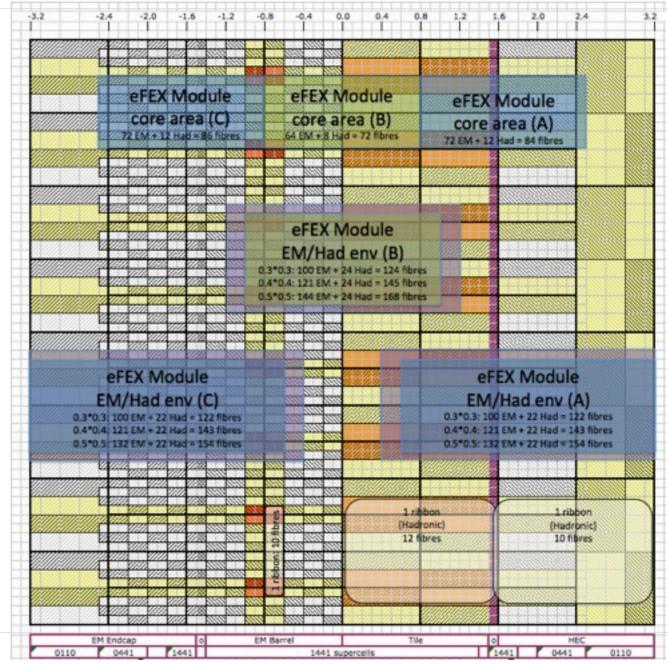
One Intermediate Connector (2)


- Can we put the intermediate connectors on the RTMs?
 - At least some of them (preferably all)
 - •If so, patch panel (or some of it) is part of the RTM
 - => Responsibility?
 - Pigtail spaghetti mostly hidden at the back of FEX racks
 - Possibly reduce number of racks needed for DPS+FEX systems
 - •NB separate patch panels would have to be in lower part of racks
 - Underneath air deflectors
 - ·Best place for being kicked!
 - •Feasibility?
 - •eFEX: ~20 ribbons (12 EM, 8 had)
 - •jFEX: ~40 ribbons??
 - •May be reducible? [Two RTM-PP types with ~30]
 - •RTM: 7cm deep, ~35cm high, ~3cm wide
 - •Connectors: ~1cm??
 - •Is there space for 20? Or 40??
 - •Bending radius for fibres??



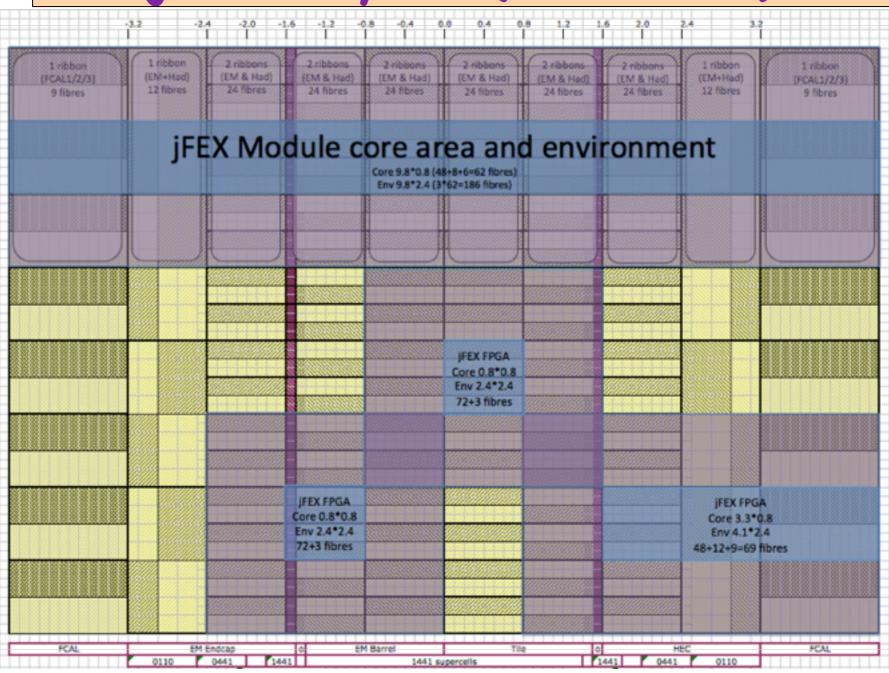
Rack and Crate Layout

- ·Pigtail connections between multiple eFEX modules
- Some 48-way bundles will connect to two crates
 - Both eFEX crates in the same rack
- Arrange eFEX modules in crates around in phi?
 - •Pigtails go to RTMs in similar slots in upper/lower crates



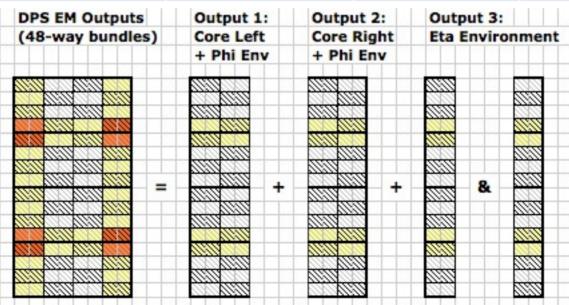
eFEX Layout (10 Gbit/s)

- Left: EM inputs
- Right: hadronic
 - NB slightly fewer hadronic fibres@ 10 Gbit/s
- ·Overlays:
 - •Core region
 - •EM & hadronic environments

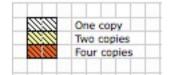


jFEX Layout (10 Gbit/s)

Uli is considering version with four 96 input FPGAs


DPS Module Outputs

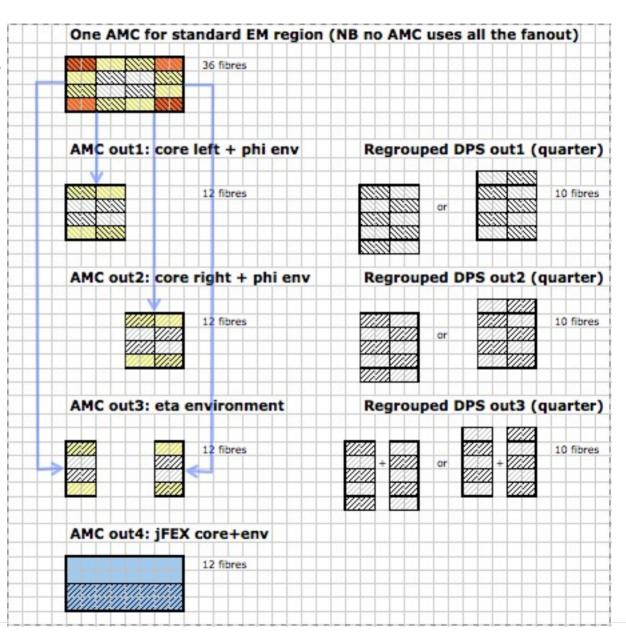
Possible use of the four 48 way outputs per DPS


- •Entries with * need extra passive optical splitting
- •NB different HEC mapping at 10 Gbit/s cf 6.4 (Q: can it be combined with EMEC inner???)

System	EM central	EMEC inner wheel	<u>HEC@6.4</u>	HEC@10	FCAL
Output 1	eFEX (core left + phi env)	eFEX (core + env)	eFEX*	eFEX	jFEX
Output 2	eFEX (core right + phi env)	eFEX (core + env)	eFEX*	eFEX	jFEX
Output 3	eFEX (eta environment)	Unused?	jFEX*	jFEX	jFEX
Output 4	jFEX	jFEX	jFEX*	jFEX*	jFEX
N.DPS	24	2?	2?	2?	1?

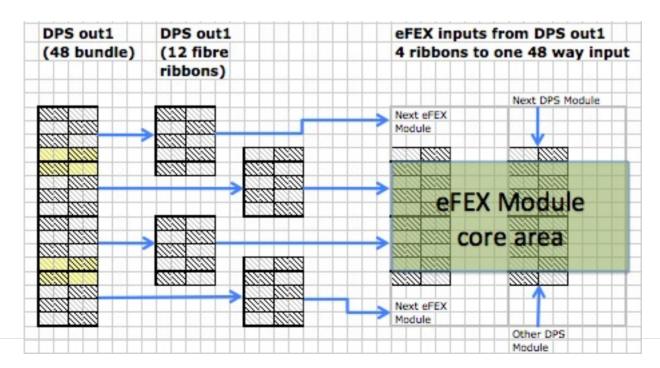
DPS Module
(Standard
EM region)
covers 0.8*1.6
in eta*phi.
Each AMC
covers 0.8*0.4

+ Output4: jFEX



Outputs from DPS AMC (EM)

Standard EM region


- •1: eFEX core left + phi environment
- 2: eFEX core right +phi environment
- •3: eFEX eta environment
- 4: jFEX core +environment
- NB phi environments
 need regrouping to
 other ribbons at DPS
 outputs

EM DPS Output 1 (Core Left)

- •Four 12-fibre ribbons from AMC output1
- Grouped into 48-way connector on DPS
- •DPS output regrouped into four different ribbons
 - · Connected to three different eFEX modules
- Combine phi environment with neighbouring core area

Summary

- Tried to look at optical patch panel details
 - Mainly considered EM inputs to eFEX
 - Some work on jFEX and hadronic inputs to eFEX
 - Completely ignored possible gFEX
 - Favour "nest of flying pigtails" approach?
 - Favour merging patch panel with FEX RTMs?

•Next steps?

- •Responsibility implications if RTM merged with patch panel?
- •If OK with L1Calo, check scheme with LAr
- ·Work out more details (especially Tile @ phase 1 & 2)
- Document...

Backup Notes

Backup Notes: Tile Inputs

Phase1/LS2/Run3

- Does JEM have single 48-way output connector? Check!
 - •Split into 8 pigtails, only 3 fibres used per 12-fibre ribbon

Phase2/LS3/Run4

- Tile ROD probably 3.2*0.2 in eta*phi
 - •If so, alternate pairs of RODs in phi need more or less fanout to eFEX
 - •RODs covering 1.6*0.4 could all have same number of used outputs
- Single 48-way output connector OK (at 10 Gbit/s)
 - Split into 3 (or 6) pigtails (4,8,4 fibres used per ribbon)

•FEX RTMs

•Different pigtail configuration for Tile phase1 & phase2

Backup Notes: RTM Types

- Single RTM configuration for jFEX (in principle)
 - However two different configurations for alternate jFEX modules in phi would allow fewer connectors in total
 - •Have 1.6+0.8 or 0.8+1.6 in phi vs regular 3*0.8
 - Alternate way of reducing number of connectors would be to have different mappings in firmware for alternate jFEX modules
- Three (two?) configurations for eFEX
 - · C side, Barrel and A-Side
 - Single type for C-side & A-side with reflection in firmware??

Backup Notes: RTM Size

- •Is 7cm RTM depth enough for bending radius?
- •If not, is it possible to have extended front panel?

Backup Notes: HEC+EMEC Inner

- · At 10 Gbit/s only one HEC DPS output needs to be split
- ·While EMEC inner wheel DPS has one unused output
- Can HEC and EMEC inner wheel DPSes be combined?
 - · Combination required at the AMC FPGA level
 - •Half EMEC LTDB + half HEC LTDB to same AMC
 - If so, maybe no need for passive optical splitting anywhere!