

Notes from LAr Upgrade WG4

Murrough Landon 31 January 2013

- •Front end: not sampling at the peak?
- Busy cables -> fibres?
- Connection to DCS
- Readout to TDAQ
- Basic mappings

And they also need decisions on mappings...

LAr Upgrade Working Groups

- Several working groups established by LAr
 - •First to prepare the IDR, now to prepare the TDR
 - Three each for front and back end systems
 - •WG1: analogue signals
 - •WG2: LTDB digital side
 - •WG3: LTDB (front end) global issues
 - •WG4: LDPS (back end) global issues
 - •WG5: LDPS hardware
 - •WG6: LDPS firmware
 - Both LAr and TDAQ IDRs encourage communication
 - •I got asked to join WG4 a few months ago
 - So far I only managed to attend a couple of vidyo meetings
 - •WG agenda pages at:
 - https://indico.cern.ch/categoryDisplay.py?categId=3283

Notes from LAr WG4 (1)

- ·LAr propose NOT to sample at the peak of the pulse
 - · Sample at random phase with no clock delays on the LTDB
 - Studies of filters by Arno&co in Dresden => should be OK
 - Are we happy with this?
 - •NB I havent seen these results
 - Background: LAr plan to use GBTx to control the LTDBs
 - •One (or maybe two) GBTx per quarter LTDB
 - •Each GBTx has 49 clock outputs, only 8 with programmable phase
 - •Need clocks for each 4-channel ADC (20) and serialiser (5 or 20)
 - •N. clocks per serialiser depend on using custom LOCx2 (5) or GBTx (20)
 - •Sampling at the peak would require rethink of LTDB clocking scheme...

Notes from LAr WG4 (2)

·LAr thinking of sending ROD Busy via fibre

- Then have to convert to electrical for ROD Busy module
 - •If LAr do this, would we want to go the same route?

Connection to DCS

- Some kind of "system manager" above shelf managers
 - Only system manager would communicate to DCS
 - •IPMC board only for single board control, not the whole crate
 - •NB will L1Topo use the LAPP IPMC card?

Readout to TDAQ

- ·LAr still has an open question whether to read out to TDAQ
 - •Or just for local monitoring purposes (not synchronised with L1Calo)
- •Ive told them we would certainly like some readout each L1A!
 - ·My feeling is that at least we need the filter output each L1A
 - And ideally the option to send ADC samples to cross check filters
 - But it all needs a bandwidth estimate and OK from TDAQ
 - •Roughly 40k supercells, how much compression?

Notes from LAr WG4 (3)

- ·Mappings (my understanding/guesswork @ 6.4 Gbit/s)
 - ·Working assumption: DPS EM FPGA covers 0.8*0.4 in eta*phi
 - •With HEC probably one quadrant of one side, ie 1.7*1.6
 - And only two copies of HEC towers (of four required)
 - •DPS FPGA will have 4 * 12 fibre ribbons out
 - •EM
 - •One ribbon using 10 fibres: 2*jFEX (0.4*0.2) + 8*eFEX (0.2*0.1)
 - ·Could orient eFEX and/or jFEX along phi instead of eta
 - •Two ribbons covers 0.8*0.4 (single copy)
 - •NB two spare fibres per ribbon, might be usable for extra copies for eFEX corners
 - Multiple configurations: we may need to ask very nicely!
 - ·HEC
 - •Need all 12 fibres to cover 1.7*0.8 (single copy)
 - •All 48 output fibres for two copies of entire quadrant
 - •Need extra splitting to get the required four copies for 2*eFEX + 2*jFEX
 - Nothing to spare for eFEX corners => additional optical splitting
 - ·FCAL
 - Need 12 fibres for 0.8 in phi at each end (two copies)
 - •OK since we (presumably) do not want FCAL for the eFEX

Notes from LAr WG4 (4)

Content of links

- Assumptions by LAr (IDR)
 - •eFEX: Two towers (20 supercells) BCMUXed into one fibre
 - •10 bits per supercell plus 1 bit BCMUX => 110 bits per BC per fibre
 - •Leaves 18 spare bits => extra dynamic range, timing, quality, checksums?
 - •jFEX: 8 0.1*0.1 towers on one fibre
 - •12 bits per tower => 96 bits per BC per fibre
 - •Plus sumE (n.bits=16?)
 - ·Leaves some spare bits: extra dynamic range, Ex&Ey, checksums?
- •FPGAs at both ends so can keep some flexibility
 - But good to have an agreed baseline