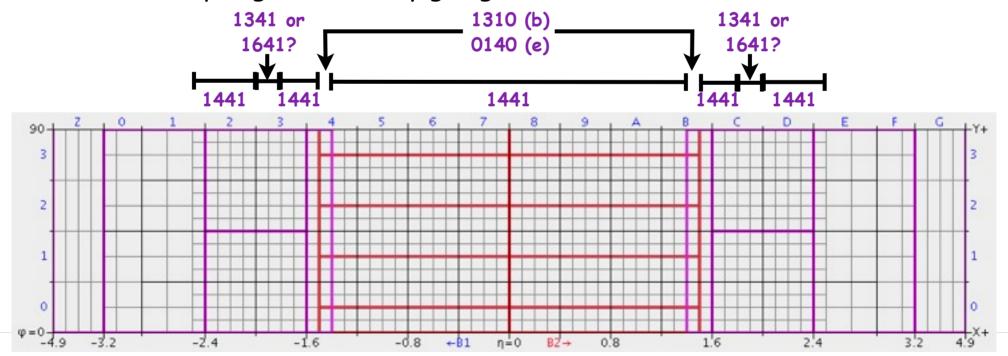


Ultra Preliminary DPS-FEX Mappings

Murrough Landon 6 February 2013

- Overview
- ·LAr FE Crate Layout
- Ideal Mapping for L1Calo??
- ·eFEX (and jFEX) Mappings
- Miscellaneous Notes

WARNING! Not Yet agreed with LAN!
WARNING! Not yet agreed with LAN!
WARNING! Mappings assume use of BCMUX!
All mappings

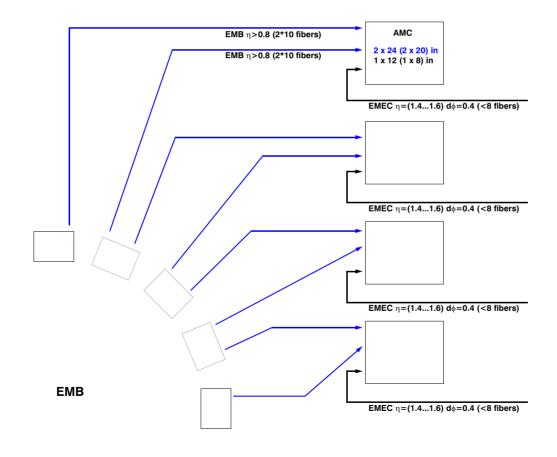

Overview

- · We will need detailed mappings for the TDR
 - These must be agreed with LAr and be feasible!
- Start with mappings that might be ideal for L1Calo
 - · And which might be possible based on discussions so far
 - ·Our aims have been discussed with LAr over one or two years
 - ·LAr designs for LTDB and LDPB have taken much on board
 - ·But the ideas have not been worked out in detail
 - Awkward areas may still cause problems => extra fibres!
- ·When its all agreed it should be documented in detail
 - For now, start with some slides...

Layout of LAr Front End Crates

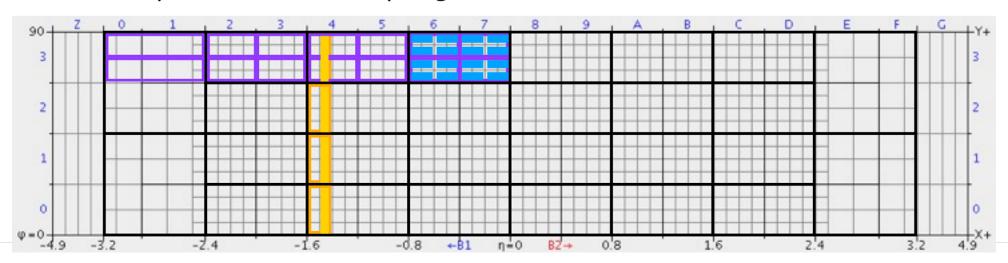
- The diagram shows a phi quadrant of the EM layer
 - The faintest grey divisions are trigger towers
 - •Outlines in red/purple are the barrel/endcap FE (whole) crates
 - ·Each crate is split into two half crates: one TBB and LTDB per half crate
 - ·The geometry is very different in barrel, overlap, endcap and high eta
 - •There are clear boundaries at eta=0, |eta|=1.6 and |eta|=2.4
 - The overlap region is clearly going to be difficult...

Baseline LAr Design

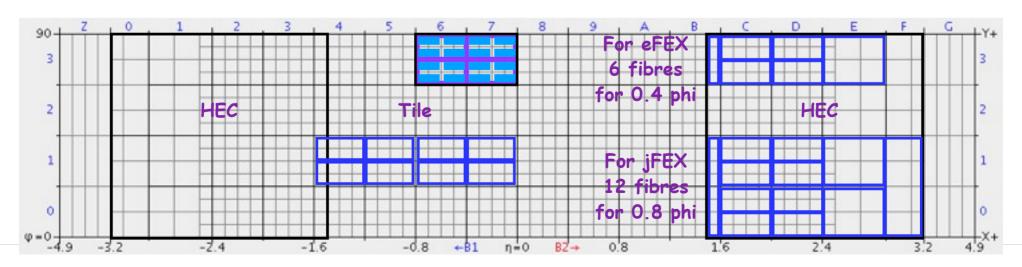

- Front end: LTDB
 - Handles 320 supercells
 - · Complex mapping: minimise crossing backplane tracks
 - Regroup fibres onto ribbons with on board pigtails?
 - ·Presumably need different configurations in different regions?
- ·Back end: LDPS board (LDPB) has four mezzanines
 - •One FPGA per mezzanine with 8 micropods (4 in, 4 out)
 - Total of 32 micropods per ATCA board
 - ·Challenging, but they think they can do it...
 - •Four input ribbons per FPGA from (equivalent of) one LTDB
 - ·No remapping of fibres within ribbons between FE & BE
 - •But can reorganise whole ribbons between LDPS inputs
 - •Might (possibly) add extra ribbon connector to facilitate overlap?????
 - •Four output ribbons per FPGA to FEXes
 - •48 fibres output for 320 supercells (32 0.1*0.1 towers)

EM Overlap Region Sketch

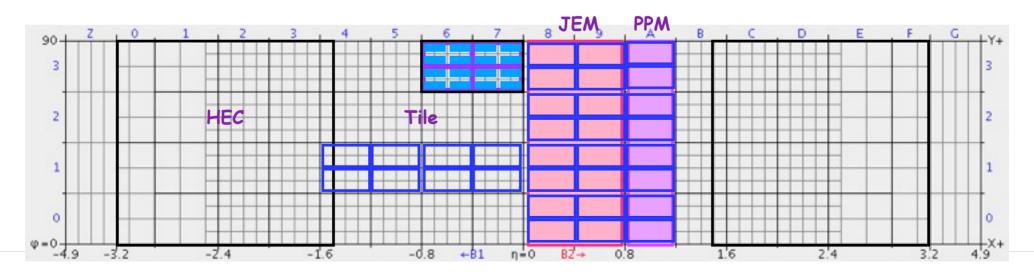
- ·Sketch for handling EM overlap region (Stefan Simion)
 - •Depends on being able to patch ribbons going to the DPS...
 - •If not, need one extra EM fibre for 1.4</br>


 to be supercells

Ideal DPS FPGA Mapping: EM

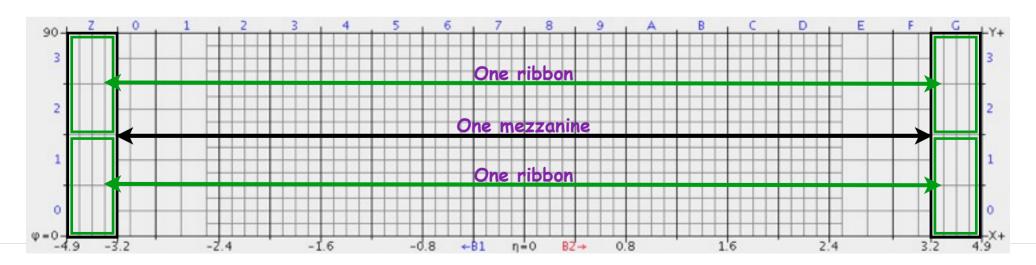

- · Aim to have each DPS EM FPGA cover a regular area
 - •One FPGA can handle 32 towers (320 supercells)
 - Try for regular pattern of 0.4 * 0.8 in eta*phi
 - •OK in endcap, probably in central barrel, challenge for overlap
- Expected EM output fibres:
 - •For jFEX: one fibre per 8 TT as 0.4*0.2
 - •For eFEX: one (BCMUX!) fibre per 2 TT as 0.2*0.1
 - •NB EM fibre 0.2 in eta is good for phi oriented eFEX
 - •But may be hard in overlap region and not obvious for |eta|>2.4

Ideal DPS FPGA Mapping: HEC


- - •One LTDB per quadrant per side: 16*10 + 8*4 = 192 towers
 - •One fibre per 0.2*0.4 in eta*phi where possible
 - •But HEC starts at |eta|=1.5 and has slice at 2.4<|eta|<2.5
 - •For jFEX have fibres containing 0.1*0.8 in eta*phi, for eFEX need just 0.4 in phi
 - •For |eta|>2.5 we need fibres covering 0.4 in phi (no room/need for last two bins to eFEX)
 - •Different mappings for eFEX and jFEX, underused fibre for eFEX at 1.5</e>
 - •Total of 24 fibres for one copy: 48 fibres (max) for 2 copies
 - •Need four copies (2*eFEX + 2*jFEX) => passive optical split
 - •Or else use twice as many half full DPS mezzanines...

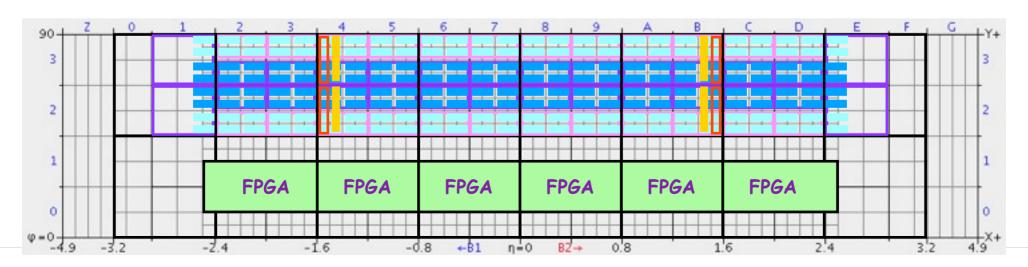
Ideal DPS FPGA Mapping: Tile

- Legacy phase 1 must be compatible with phase 2
 - One fibre per 0.2*0.4 in eta*phi
 - Matches current PPM/JEM
 - Should be compatible with proposed phase 2 Tile ROD
 - •Four copies from PPM (or JEM) interface (2*eFEX + 2*jFEX)
 - Ignore HEC cells at 1.5 < | eta | < 1.6
 - •For phase 2, split currently merged |eta|>1.4 Tile tower
 - •Or add gap/crack scintillators?

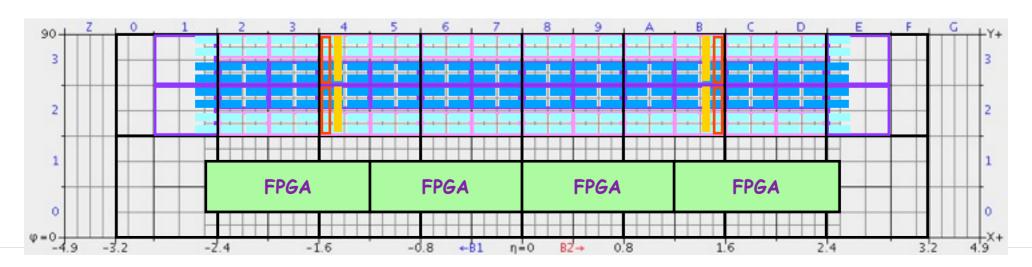


Ideal DPS FPGA Mapping: FCAL

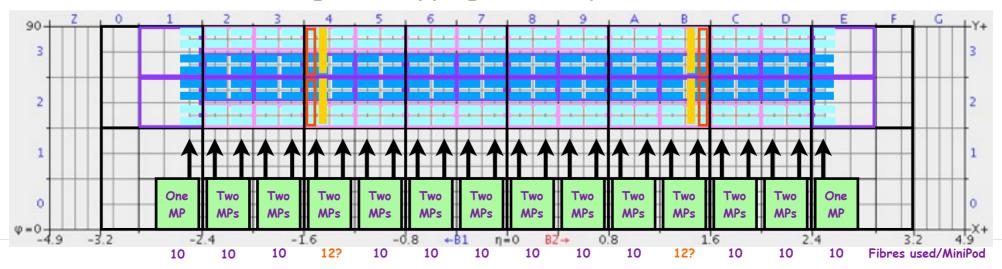
Consider phi oriented jFEX


- ·Useful to have quadrant of FCAL A&C in one DPS mezzanine
 - (Avoids having to patch fibre ribbons afterwards)
 - Two LTDBs per side => half LTDB per quadrant per side
 - •N. supercells per 0.4 in phi: FCAL1=12, FCAL2=8, FCAL3=4
 - Total 24 supercells per 0.4 phi per side => 3 fibres @ 8 SC/fibre
 - •One ribbon covers 0.8 phi for both A and C sides all 3 layers
 - •24 fibres per quadrant, duplicated to 48 fibres

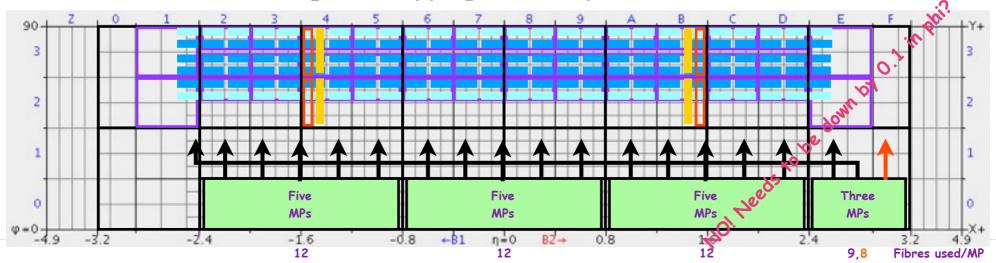
Mapping to eFEX Module (1)


- · Assume two crate phi oriented eFEX design
 - ·8 eFEX modules per crate, each handling 5.0*0.4 in eta*phi
 - The diagram shows the worst case for 0.5*0.5 environment
 - •For 0.4*0.4, one row of EM fibres is removed
 - •For 0.3*0.3, two rows of EM fibres and one hadronic are removed
 - •The latter requires the core region to be shifted by 0.1 in phi (instead of 0.2 shift)
 - •Duplicated fibres for environment fanout are shown in lighter colours
 - •Possible additional fibres at boundaries are shown in yellow (EM) or orange (HEC)
 - •Possible division between four (0.4*1.2) or six (0.4*0.8) FPGAs?
 - The two end FPGAs have less fan in but one extra phi bin of core processing

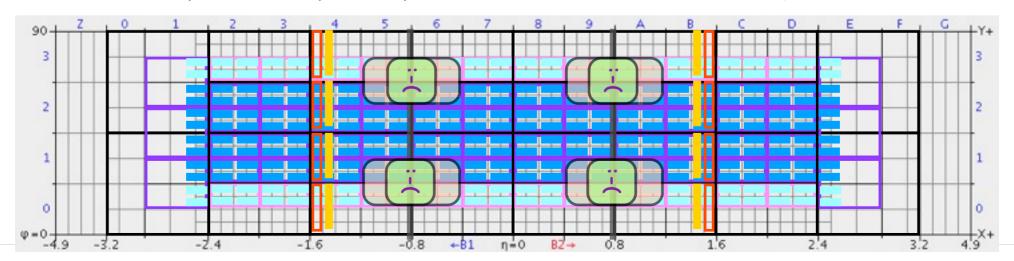
Mapping to eFEX Module (2)


- · Assume two crate phi oriented eFEX design
 - ·8 eFEX modules per crate, each handling 5.0*0.4 in eta*phi
 - The diagram shows the worst case for 0.5*0.5 environment
 - •For 0.4*0.4, one row of EM fibres is removed
 - •For 0.3*0.3, two rows of EM fibres and one hadronic are removed
 - •The latter requires the core region to be shifted by 0.1 in phi (instead of 0.2 shift)
 - •Duplicated fibres for environment fanout are shown in lighter colours
 - •Possible additional fibres at boundaries are shown in yellow (EM) or orange (HEC)
 - •Possible division between four (0.4*1.2) or six (0.4*0.8) FPGAs?
 - The two end FPGAs have less fan in but one extra phi bin of core processing

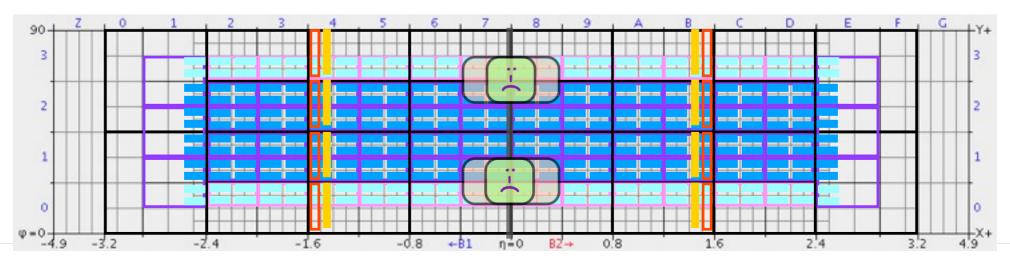
eFEX Fibre Ribbon Mapping


- ·Simplest: 2 ribbons (2 minipods) for 0.4 in eta
 - •Most ribbons use only 10 of the 12 fibres (for 0.5*0.5 env)
 - ·Some ribbons may use 11 or 12 fibres at boundaries with same layout
 - More ribbons per module than a really compressed mapping
 - •But regular mapping per FGPA => easier layout of the board??
 - Total of 26 ribbons (minipods) per module
 - •Same layout could handle either 0.4*0.4 or 0.5*0.5
 - •Need to track one less fibre per minipod in the 0.4*0.4 case
 - •For 0.3*0.3 environment more compact mapping possible
 - •But most obvious regular mapping has no spare fibres for boundaries

eFEX Fibre Ribbon Mapping


- ·Simplest: 2 ribbons (2 minipods) for 0.4 in eta
 - •Most ribbons use only 10 of the 12 fibres (for 0.5*0.5 env)
 - ·Some ribbons may use 11 or 12 fibres at boundaries with same layout
 - More ribbons per module than a really compressed mapping
 - •But regular mapping per $FGPA \Rightarrow$ easier layout of the board??
 - Total of 26 ribbons (minipods) per module
 - •Same layout could handle either 0.4*0.4 or 0.5*0.5
 - •Need to track one less fibre per minipod in the 0.4*0.4 case
 - •For 0.3*0.3 environment more compact mapping possible
 - •But most obvious regular mapping has no spare fibres for boundaries

eFEX With Many Corners :-(


- Divide eFEX by both eta and phi: introducing corners
 - Split at +/- 0.8 to avoid complications at barrel/endcap
 - •Core coverage roughly 1.6*0.8 => 24 modules in two crates
 - Needs quadruplication of inputs at the corners
 - Two extra supercell fibres per DPS EM mezzanine
 - •Four different configurations needed => switching or firmware variants??
 - •Extra Tile fibres every other 0.4 in phi at 0.4</br>
 - •Add minipods to all phase 1 & 2 Tile sources, but only actually needed on some modules
 - •For 0.5*0.5 environment: 120 EM fibres + 36 had + 8 overlap?
 - •10 or 20 fewer EM fibres for 0.4*0.4 or 0.3*0.3 environments

eFEX With Fewer Corners :-(

- Divide eFEX by both eta and phi: introducing corners
 - •Split at eta=0 to avoid complications at barrel/endcap
 - •Core coverage 2.5*0.8 => 16 modules in two crates
 - Needs quadruplication of inputs at the corners
 - Two extra supercell fibres per DPS EM mezzanine
 - •Four different configurations needed => switching or firmware variants??
 - •Extra Tile fibres every other 0.4 in phi at 0.4</br>
 - •Add minipods to all phase 1 & 2 Tile sources, but only actually needed on some modules
 - •For 0.5*0.5 environment: 168 EM fibres + 45 had + 8 overlap?
 - •14 or 28 fewer EM fibres for 0.4*0.4 or 0.3*0.3 environments

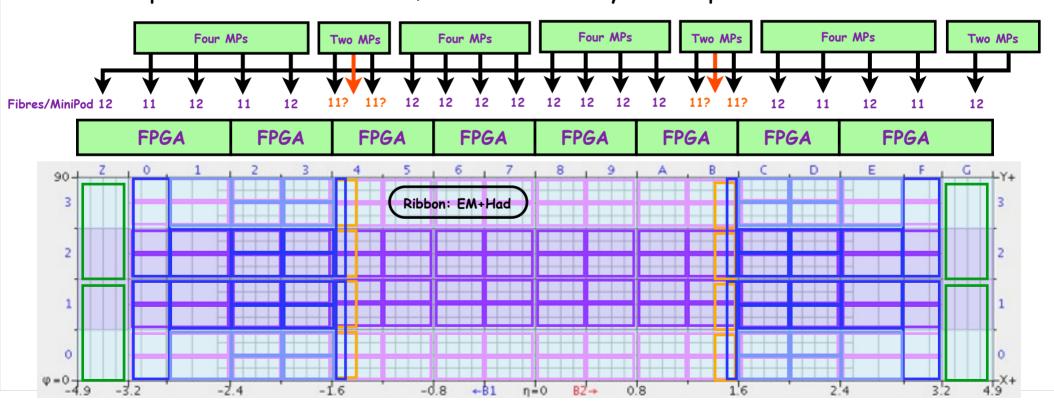
eFEX Module Fibre Counts

• Fibre count for whole eFEX module (full eta strip)

Environment	EM Fibres	Hadronic Fibres	Total Fibres	N. Ribbons
0.3*0.3	6 * 26 = 156	3 * 14 = 42	198	17 (18?)
0.4*0.4	7 * 26 = 182	4 * 14 = 56	238	20 (26?)
0.5*0.5	8 * 26 = 208	4 * 14 = 56	264	22 (26?)

• Fibre count per FGPA for four FPGAs/module

Environment	EM Fibres	Hadronic Fibres	Total Fibres	Fan In/Out
0.3*0.3	6 * 8 = 48	3 * 5 = 15	63	18
0.4*0.4	7 * 8 = 56	4 * 5 = 20	76	22
0.5*0.5	8 * 8 = 64	4 * 5 = 20	84	24


• Fibre count per FPGA for six FPGAs/module

Environment	EM Fibres	Hadronic Fibres	Total Fibres	Fan In/Out
0.3*0.3	6 * 6 = 36	3 * 4 = 12	48	18
0.4*0.4	7 * 6 = 42	4 * 4 = 16	58	22
0.5*0.5	8 * 6 = 48	4 * 4 = 16	64	24

Mapping to jFEX Module

- Orient in phi with modules handling all eta * 0.8 phi?
 - •Funny business at high eta and FCAL the same for all modules
 - Roughly same fibre counts as dividing into eta stripes
 - •Still expect ~256 fibres per module (22 minipods) and eight FPGAs
 - May need extra fibres at EM barrel/endcap boundary
 - To optimise FCAL ribbons, core shifted by 0.4 in phi

Uses of Spare EM DPS Fibres

- •EM DPS (probably) has some spare fibres
 - •Need 20 fibres (16 eFEX + 4 jFEX) for 0.8*0.4 area (1 copy)
 - •24 fibres available (48 for two copies)
- Potential uses:
 - •Extra copies of some eFEX fibres to handle corners
 - ·Extra copies of jFEX fibres to allow for larger jets
- •No spare HEC fibres?
 - ·Both above potential uses would need extra HEC & Tile copies

Active Patch Panel?

- •Recent suggestion to have more active patch panel?
 - •Provide extra copies where we need them
 - ·Less coupling between FEX and DPS geometries
 - Though groups of supercells/towers on single fibres still constrained
 - •NB if we do this, would it provide all duplication?
 - ·LAr might like to reduce number of micropods per DPS mezzanine?

What If No BCMUX?

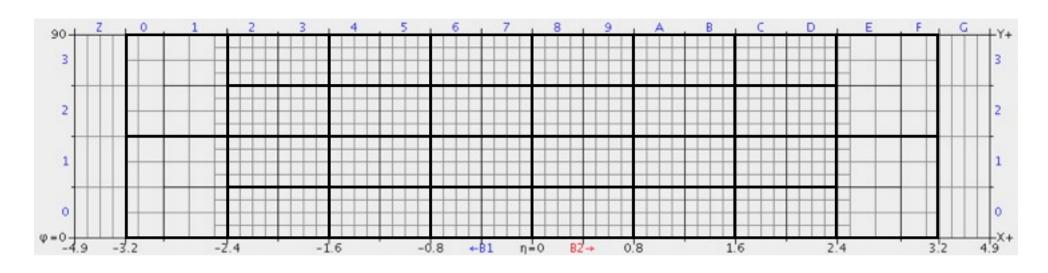
- Some people are unsure about the BCMUX scheme
 - ·Worry about losing signals with high pileup at 25ns operation
 - •NB with 50ns operation so far, existing BCMUX not yet tested in anger?
- No BCMUX implies approximately double bandwidth
 - •NB even going from 6.4 to 10 Gbit/s may not be enough
 - ·Unless we drop back to the 1141 scheme or use less dynamic range
 - •With BCMUX we have 110 bits per two TT => one fibre @ 6.4
 - ·Leaving a few spare bits for extra info (quality bits), checksums etc
 - •No BCMUX, have 200 bits per two TT
 - •Might exactly squeeze into 10 Gbit/s, but not 9.6?
 - ·No room for extra info (quality bits), checksums etc

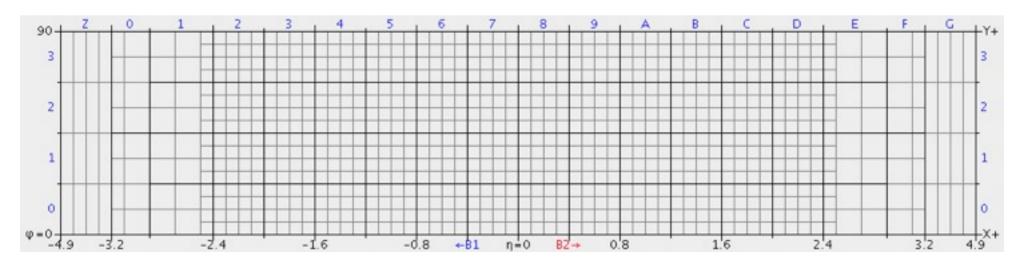
Miscellaneous Notes

- Hadronic mapping (Needs 4 copies: 2*eFEX + 2*jFEX)
 - Should be OK for Tile from PPM or JEM (0.4 or 0.8 in eta)
 - •HEC from LAr DPS also OK?? (Check!) But only 2 copies?!
 - •However there is a difficult boundary at |eta|=1.5
 - •Need one fibre for 1.5</br>|eta|<2.0</td>to carry 10trigger towers
 - ·Lower dynamic range or more aggressive non-linear encoding?
 - •Or else we need an extra fibre (duplicated) for HEC 1.5</eta|<1.6
 - Similar problem for Tile if we include crack/gap scintillators??

Readout Checksums

- Proposal to send checksums from DPS to FEXes
 - To avoid readout of FEX inputs unless there are checksum errors
- •How do these fit onto the proposed fibre mapping??
- High eta region (EM)
 - •Could use one EM 0.1*0.2 fibre for 2.4</br>
 - •Or else keep two 0.2*0.1 fibres and send the high eta region just in case?




Summary

- ·L1Calo "hoped for" mapping sketched
- ·Still needs a lot of detailed work...
 - Discussion with LAr experts
 - •NB they are currently working to the 0.4*0.2 shape DPS mezzanine FPGA
 - Documentation, documentation
 - · All to be done soon to allow eFEX & jFEX specification

Spare: Grids for Doodling

