

gFEX Functionality via jFEX?

Murrough Landon 14 November 2013

- Introduction
- •Pileup calculations
- •Fatter jets (in phi and eta)
- •Phi ring jFEX
- Summary and questions

- Play devils advocate and try to avoid gFEX hardware
 Can requested gFEX functionality be provided by jFEX?
 And can jFEX do better than the TDR gFEX??
- •NO if we must stick to TDR baseline 6.4 Gbit/s links
 •But lets assume 10 Gbit/s links (ideally 11.2)
- Two requested gFEX functions (as far as I know)
 - •Calculating estimate of event by event pileup
 - •This then needs to be subtracted from jets and missing Et
 - •Increasing the jet window
 - •Way beyond TDR baseline jFEX window of 0.9*0.9
 - •Ideally also beyond 1.7*1.7 suggested for 10 Gbit/s jFEX

- •gFEX request is really to do this in phi rings
 - •Required granularity in eta is not clear full eta range needed
- •Can this be done with jFEX oriented in eta strips?
 - •One jFEX module covers all eta by 0.8 in phi
 - •All jFEX modules have a small equal dose of barrel/endcap/FCAL issues
- jFEX at 10 Gbit/s: 0.8 phi core + 2 * 0.8 environment
 - So each jFEX sees 24 of the total 64 phi bins
 - My original idea was to estimate pileup median from 24 towers
 Then send 8 median estimates (per eta range) to L1Topo
 - •How many fibres can we use for this...? [PTO]
 - Assuming 1 fibre at 11.2 Gbit/s => 216 bits (+8 bit CRC)
 - •Say 8 bits per pileup median => 27 possible values
 - •Eta range is 82 (50 central, 8 forward, 2*12 FCAL1)
 - •So roughly one pileup median per 3 eta bins

Phase 1 L1Topo Inputs

- Updated proposal following L1Calo meetingL1Topo FPGA1:
 - •48 eFEX EM fibres (2/eFEX module)
 - •24 jFEX jet fibres (3/jFEX module)
 - •4 muon fibres (NB copied to both FPGAs)
 - •4 spare fibres

•L1Topo FPGA2:

- •48 eFEX Tau fibres (2/eFEX module)
- 8 jFEX energy sum fibres (1/jFEX module)
 Here I assumed a couple of Ex/Ey and Et sums
- •4 muon fibres (NB copied to both FPGAs)
- •20 spare fibres

•So we could use 1 or 2 fibres/jFEX module for pileup

•Using two leaves almost no spare inputs for future ideas...

Murrough Landon, QMUL

What David Actually Wants...

- However my proposal is not what is really wanted!
- •Instead David suggests several values per eta range
 - •Et vector of all towers: 12 value + 3 bit direction (local phi)
 - •Vector of towers with Et below a cut Ethresh (7+3 bits)
 - •Sum Et of towers below the cut (7 bits) => pileup estimator
 - •Total 32 bits per eta range
- •Send this on either 2 or 3 fibres
 - This is my pair of energy and pileup fibres (plus one more?)
 - •At 11.2 Gbit/s, two (three) fibres allows 432 (648) bits
 - That allows 13 (20) eta ranges
 Probably 20 is OK, 13 too few?
 - •And uses a lot of L1Topo inputs

Later on will consider jFEX in phi rings

- •10 Gbit/s jFEX offers 1.7*1.7 jets sliding by 0.1
 - There is 0.8 eta and phi environment around each core tower
- •But TDR gFEX suggests sliding by 0.2
 - •And only offers a slightly larger window of 1.8*1.8
- •But jFEX with 0.2 sliding windows offers the same!
 - •2*0.8 environment around each tower + core 0.2
 - •And gaussian weighting calculations can still be done at 0.1
 - •[Reminder: only if we are allowed to assume 10 Gbit/s links]
- •Is there any chance of even fatter jets?
 - Consider schemes for wider in phi or eta or both
 Only sliding by 0.2 (surely no bandwidth for 0.1)
 NB not much thought so far => could be overlooked killer problems
 - •Following diagrams are for eta oriented jFEX modules
 - •Similar options possible for phi ring jFEX modules (with eta <-> phi)

•LAr DPS FPGAs cover 0.8*0.4 in eta*phi (central EM)

- Proposal at 10 Gbit/s: two fibres each covering 0.8*0.2
- Sixteen 0.1*0.1 towers per link
 - •11 (13) bits/tower available at 9.6 (11.2): 13 ample, 11 still OK?
 - •Originally some ideas of special Ex/Ey/E sums per FPGA (top slice bits) •But probably this ideas is not useful given David Stroms recent input

• Suggestion:

- Squeeze n.bits/tower and add four 0.2*0.2 sums from the other half of each FPGA (probably only at 11.2 Gbit/s)
 16 * 11 bits/tower + 4 * 10 bits/sum = 216 bits + 8 bit CRC = 224 bits
- •Shift core jFEX coverage by 0.2 to span centre of DPS FPGAs
- •Can have 1.8*2.2 (eta*phi) jets sliding by 0.2

Murrough Landon, QMUL

L1Calo

Fatter in Eta

• jFEX FPGAs are full of high speed input fibers

- Suggestion: what about low speed (1 Gbit/s) links?
- •Consider sending slice of 12 0.2*0.2 sums to neighbour FPGA •Actually 24 sums if we keep EM and hadronic separate (if needed??)
- •One 1 Gbit/s link sends 25 bits/BC => two 0.2*0.2 sums
 - •Need 6 (or 12) links per slice for EM+Had (or separate EM and Had) •Six such slices on the PCB => 36 (or 72) links in total - is that too many??
 - •If its OK, could have 2.2*1.8 (eta*phi) jets sliding by 0.2

8

Murrough Landon, QMUL

Overview Diagram

1 ribbon (FCAL1/2/3) 9 fibres	1 ribbon (EM+Had) 12 fibres	2 ribbons (EM & Had) 24 fibres 24 fibres	2 ribbons (EM & Had) 24 fibres 24 fibres 24 fibres	2 ribbons (EM & Had) 24 fibres 24 fibres	1 ribbon (EM+Had) 12 fibres
jFEX	Modu	ule core area	a and enviro Core 9.8*0.8 (48+8+6=62 fibres) Env 9.8*2.4 (3*62=186 fibres)	onment (shi	fted by 0.2)
			Extra layer of 0.2*0.2 int element		
		12 12 0.2 0.2 0.2 0.2	12 12 0.2 0.2 • 0.2 0.2	12 12 0.2 0.2 0.2 0.2	
Half jFEX FPGA d jFEX FPGA c Core 1.7*0.8 (*2 for A+C) Core 1.6*0.8 Env 2.5*2.4 (*2 for A+C) Env 3.2*2.4 (24+12+9)*2=90 fibres 84 fibres		jFEX FPGA b Core 1.6*0.8 Env 3 2*2.4 96(+6?) fibres	jFEX FPGA a Core 1.6*0.8 Env 3.2*2.4 84 fibres	Half jFEX FPGA d Core 1.7*0.8 (*2 for A+C) Env 2.5*2.4 (*2 for A+C) (24+12+9)*2=90 fibres	

Murrough Landon, QMUL

L1Calo

Fatter in Eta and Phi

•Could use both options together (if both are viable)

That might allow 2.2*2.2 jets sliding by 0.2
NB this implies a few extra 1 Gbit/s links for extra phi coverage

Caveats and questions

- •Is it actually useful to have fatter jets in one direction only?
- Adding jet element sums to fibres limits n.bits/tower
 Not really sure how many bits/tower we really need
 At least it seems there may not be a need for Ex/Ey/E sums from the DPS

•Adding tracks to jFEX PCB increases complexity

- •NB in the four 96-input FPGA design, a few 1 Gbit/s links would also be needed for replicating the HEC overlap towers for one eta position
 - $\ensuremath{\cdot}$ Though quite possibly no one would notice a small inefficiency
- •Retransmission over these links has a ~1 BC latency penalty
- •Shifting jFEX core by 0.2 is clearly ugly for FCAL
 - •Probably OK for HEC and forward EMEC but not studied in detail

Phi Ring jFEX Modules

- •NB not mentioned in my megamail
- •Pileup corrections much easier with phi ring jFEX
 - •No need for additional L1Topo fibres
- Look at phi ring jFEX architecture
 - •Mainz has already done this I think
 - •And still try to allow for fatter eta/phi jet options
 - •Needs jFEX core shifted by 0.4 in eta
 - •Central jFEX module spans eta=0
 - •Only need seven modules (cf eight in eta oriented scheme) => fewer L1Topo inputs

•BUT (or maybe just but)

- •No space for HEC overlap fibres (as environment)
 - Some corresponding loss of efficiency
 - •But this only affects outlying part of jet so perhaps not too bad?
- •Need more 1 Gbit/s links for fatter phi option
- •Fatter eta option needs different fibre geometry => Tile?!

Phi Ring jFEX Diagram

		JFEX FPGA 1		JEX FPGA 1		
	12 0.2*0.2 sums	Core 0.8*1.6		Core 0.8*1.6		
	12 0.2 °0.2 sums	96 fibres		96 fibres		
					ICEN	CERCA 2
	12 0.2*0.2 sums	Core 0.8*1.6			Core	29*1.6
	12 0.2 *0.2 sums	Env 2,4*3.2			Env	3 7*3.2
		96 fibres CO 🔮	2		80	fibres
		× on E	1	let		
		Ū t	~	10.2		
			2	0	2 ribbons	
			9 //////	Jero	(EM & Had plus FCA 12+8+20 fibre	11/2/3)
		JEEX FPGA 3		FCAL fibres	ow density: 12 towers/	the, FCAL1 or FCAL2+3
	12 0.2*0.2 sums	Core 0.8*1.6	5	1		
	12 0 2*0.2 sums	96 fibres		2 ribbons		
		U U		24 fibres	9	
			2 42 4 4 4			
		ŏ	(EM & Had)			
		HEY EDGA	24 fibres			
	12 0.2*0.2 sums	Core 0.8*1.6				
	12 0 2 *0.2 sums	Env 2.4*3.2				
		96 fibries Had				

Murrough Landon, QMUL

L1Calo

•Fatter eta option => fibre covers 0.4*0.4

- Only need 2 extra 0.2*0.2 sums => may even work at 9.6 Gb/s
 Have 10 bits/tower (or sum) at 9.6, comfortable 11 bits/tower at 11.2
- •OK for LAr EM, probably OK for HEC and EMEC forward
 - •Need to check impact on eFEX: maybe shift eFEX core by 0.2 in phi?

- •Would need to insist Tile phase 2 electronics covers 0.4 in phi
- •What about Tile input at phase 1?

Phi Ring Tile Input at Phase 1

• Division of JEM towers into FPGAs is awkward!

- •But can be made to match neatly for eta oriented jFEX
- •0.8*0.2 fibres also match Tile preference for phase 2
- •Ugly solution is possible with 0.4*0.4 shape fibres
 - •Assuming at phase 1 we still only have 8 bits/tower
 - •Can fit 24 towers per 11.2 Gbit/s fibre (but not 9.6!)
 - And at 11.2 also have room for 2 or 3 0.2*0.2 sums
 - •27*8 bits = 216 + 8 bit CRC = 224 bits exactly

•My personal opinion:

- •gFEX functionality can be done in 11.2 Gbit/s jFEX •And jFEX might be able to provide even fatter jets than TDR gFEX
- •But nothing comes for free!
 - •Price includes one or more of: fewer bits/tower, ugly match to FCAL, loss of efficiency for HEC overlap in some places, extra complexity of jFEX PCB, 0.4 phi modularity in Tile at phase 2, etc
- •And uncertain link speed means we cannot choose now

•Pileup related (eta oriented jFEX)

- •Is median of each jFEX median a good enough estimator?
- Are Davids bit counts adequate?
- •Is the possible number of eta ranges enough?
- •Is this taking up too many L1Topo inputs?
- •Fatter jets (>1.8 in eta or phi or both)
 - •N.bits/tower required? Also n.bits/sum (jet element)?
 - •Is there really no need for Ex/Ey/E from DPS?
 - •Is it helpful if jets can only be fatter in one direction?
 - •Are there problems with FCAL in jFEX shifted by 0.2 in phi?
 - •Can we use additional 1 Gbit/s links on jFEX PCB?
 - •Is a 1 BC latency penalty (a) possible (b) a worthwhile price?
 - •How sensitive are such huge jets to hardware problems??

(Initial) List of Questions (2)

Political

•Can the MoU be written to require gFEX functionality but allow implementation by jFEX if link speeds allow?