

Preliminary DPS-FEX Mappings

Murrough Landon 12 March 2013

Overview

- •We will need detailed mappings for the TDR
 - These must be agreed with LAr and be feasible!
- •Start with mappings that might be ideal for L1Calo
 - •And which might be possible based on discussions so far
 - •Our aims have been discussed with LAr over one or two years
 - •LAr designs for LTDB and LDPB have taken much on board
 - •But the ideas have not been worked out in detail
 - •Awkward areas may still cause problems => extra fibres!
- •When its all agreed it should be documented in detail
 - •LAr is beginning this process
 - •For now, start with some slides...

Layout of LAr Front End Crates

- The diagram shows a phi quadrant of the EM layer
 - The faintest grey divisions are trigger towers
 - •Outlines in red/purple are the barrel/endcap FE (whole) crates •Each crate is split into two half crates: one TBB and LTDB per half crate
 - •The geometry is very different in barrel, overlap, endcap and high eta
 - •There are clear boundaries at eta=0, |eta|=1.6 and |eta|=2.4
 - •The overlap region is clearly going to be difficult...

Baseline LAr Design

• Front end: LTDB

- •Handles 320 supercells (32 towers)
- Complex mapping: minimise crossing backplane tracks
- •Regroup fibres onto ribbons with on board pigtails?
 - Presumably need different configurations in different regions?
- •Back end: LDPS board (LDPB) has four mezzanines
 - •One FPGA per mezzanine with 8 micropods (4 in, 4 out)
 - •320 supercells per FPGA (equivalent of one LTDB)
 - •Total of 32 micropods per ATCA board challenging!!
 - •Four input ribbons per FPGA from (equivalent of) one LTDB
 - •No remapping of fibres within ribbons between FE & BE
 - •But can reorganise whole ribbons between LDPS inputs
 - •Might (possibly) add extra ribbon connector to facilitate overlap?????
 - •Four output ribbons per FPGA to FEXes
 - •48 fibres output for 320 supercells (32 0.1*0.1 towers)

EM Overlap Region Sketch

•Sketch for handling EM overlap region (Stefan Simion)

Depends on being able to patch ribbons going to the DPS... If not, need one extra EM fibre for 1.4 [0.1*0.4, 2*4 supercells]

Murrough Landon, QMUL

Ideal DPS FPGA Mapping: EM

•Aim to have each DPS EM FPGA cover a regular area

- •One FPGA can handle 32 towers (320 supercells)
- Try for regular pattern of 0.4 * 0.8 in eta*phi
 OK in endcap, probably in central barrel, challenge for overlap
- •Expected EM output fibres:
 - •For jFEX: one fibre per 8 TT as 0.4*0.2
 - •For eFEX: one (BCMUX!) fibre per 2 TT as 0.2*0.1
 - •NB EM fibre 0.2 in eta is good for phi oriented eFEX
 - •But may be hard in overlap region and not obvious for |eta|>2.4

6

L1Calo

Murrough Landon, QMUL

Ideal DPS FPGA Mapping: HEC

•HEC DPS Mezzanine: 1.5/eta3.2 * 0.8 phi? (Check!)

- •One LTDB per quadrant per side: 16*10 + 8*4 = 192 towers
- •One fibre per 0.2*0.4 in eta*phi where possible
 - •But HEC starts at |eta|=1.5 and has slice at 2.4<|eta|<2.5
 - •For jFEX have fibres containing 0.1*0.8 in eta*phi, for eFEX need just 0.4 in phi
 - For |eta|>2.5 we need fibres covering 0.4 in phi (no room/need for last two bins to eFEX)
 Different mappings for eFEX and jFEX, underused fibre for eFEX at 1.5
- Total of 24 fibres for one copy: 48 fibres (max) for 2 copies
 Need four copies (2*eFEX + 2*jFEX) => passive optical split

•Or else use twice as many half full DPS mezzanines...

Murrough Landon, QMUL

Ideal DPS FPGA Mapping: Tile

•Legacy phase 1 must be compatible with phase 2

- •One fibre per 0.2*0.4 in eta*phi
 - Matches current PPM/JEM
 - •Should be compatible with proposed phase 2 Tile ROD
- •Four copies from PPM (or JEM) interface (2*eFEX + 2*jFEX)
 - •Ignore HEC cells at 1.5</leta
 - •For phase 2, split currently merged |eta|>1.4 Tile tower
 - •Or add gap/crack scintillators?

8

Murrough Landon, QMUL

Ideal DPS FPGA Mapping: FCAL

Consider phi oriented jFEX

- •Useful to have quadrant of FCAL A&C in one DPS mezzanine
 - •(Avoids having to patch fibre ribbons afterwards)
 - •Two LTDBs per side => half LTDB per quadrant per side
 - •N. supercells per 0.4 in phi: FCAL1=12, FCAL2=8, FCAL3=4
 - •Total 24 supercells per 0.4 phi per side => 3 fibres @ 8 SC/fibre
 - •One ribbon covers 0.8 phi for both A and C sides all 3 layers
 - •24 fibres per quadrant, duplicated to 48 fibres

Murrough Landon, QMUL

Mapping to eFEX Module (1)

•Assume two crate phi oriented eFEX design

- •8 eFEX modules per crate, each handling 5.0*0.4 in eta*phi
- •The diagram shows the worst case for 0.5*0.5 environment •For 0.4*0.4, one row of EM fibres is removed
 - •For 0.3*0.3, two rows of EM fibres and one hadronic are removed
 - •The latter requires the core region to be shifted by 0.1 in phi (instead of 0.2 shift)
 - •Duplicated fibres for environment fanout are shown in lighter colours •Possible additional fibres at boundaries are shown in yellow (EM) or orange (HEC)
 - •Possible division between four (0.4*1.2) or six (0.4*0.8) FPGAs?
 - •The two end FPGAs have less fan in but one extra phi bin of core processing

Murrough Landon, QMUL

Mapping to eFEX Module (2)

•Assume two crate phi oriented eFEX design

- •8 eFEX modules per crate, each handling 5.0*0.4 in eta*phi
- •The diagram shows the worst case for 0.5*0.5 environment •For 0.4*0.4, one row of EM fibres is removed
 - •For 0.3*0.3, two rows of EM fibres and one hadronic are removed
 - •The latter requires the core region to be shifted by 0.1 in phi (instead of 0.2 shift)
 - •Duplicated fibres for environment fanout are shown in lighter colours •Possible additional fibres at boundaries are shown in yellow (EM) or orange (HEC)
 - •Possible division between four (0.4*1.2) or six (0.4*0.8) FPGAs?
 - •The two end FPGAs have less fan in but one extra phi bin of core processing

Murrough Landon, QMUL

eFEX Fibre Ribbon Mapping

•Simplest: 2 ribbons (2 minipods) for 0.4 in eta

- •Most ribbons use only 10 of the 12 fibres (for 0.5*0.5 env)
 - •Some ribbons may use 11 or 12 fibres at boundaries with same layout
- •More ribbons per module than a really compressed mapping
 - •But regular mapping per FGPA => easier layout of the board??
 - •Total of 26 ribbons (minipods) per module
 - •Same layout could handle either 0.4*0.4 or 0.5*0.5
 - •Need to track one less fibre per minipod in the 0.4*0.4 case
- •For 0.3*0.3 environment more compact mapping possible

•But most obvious regular mapping has no spare fibres for boundaries

eFEX With Many Corners :-(

• Divide eFEX by both eta and phi: introducing corners

- Split at +/- 0.8 to avoid complications at barrel/endcap
 - •Core coverage roughly 1.6*0.8 => 24 modules in two crates
- •Needs quadruplication of inputs at the corners
 - Two extra supercell fibres per DPS EM mezzanine
 Four different configurations needed => switching or firmware variants??
 - •Extra Tile fibres every other 0.4 in phi at 0.4</leta
 - •Add minipods to all phase 1 & 2 Tile sources, but only actually needed on some modules
- •For 0.5*0.5 environment: 120 EM fibres + 36 had + 8 overlap?

•10 or 20 fewer EM fibres for 0.4*0.4 or 0.3*0.3 environments

Murrough Landon, QMUL

eFEX With Fewer Corners :-(

•Divide eFEX by both eta and phi: introducing corners

- Split at eta=0 to avoid complications at barrel/endcap
 - Core coverage 2.5*0.8 => 16 modules in two crates
- •Needs quadruplication of inputs at the corners
 - Two extra supercell fibres per DPS EM mezzanine
 Four different configurations needed => switching or firmware variants??
 - •Extra Tile fibres every other 0.4 in phi at 0.4</letal<1.2
 - $\bullet \mathsf{Add}$ minipods to all phase 1 & 2 Tile sources, but only actually needed on some modules
- •For 0.5*0.5 environment: 168 EM fibres + 45 had + 8 overlap?

•14 or 28 fewer EM fibres for 0.4*0.4 or 0.3*0.3 environments

Murrough Landon, QMUL

eFEX Module Fibre Counts

•Fibre count for whole eFEX module (full eta strip)

Environment	EM Fibres	Hadronic Fibres	Total Fibres	N. Ribbons
0.3*0.3	6 * 26 = 156	3 * 14 = 42	198	17 (18?)
0.4*0.4	7 * 26 = 182	4 * 14 = 56	238	20 (26?)
0.5*0.5	8 * 26 = 208	4 * 14 = 56	264	22 (26?)

•Fibre count per FGPA for four FPGAs/module

Environment	EM Fibres	Hadronic Fibres	Total Fibres	Fan In/Out
0.3*0.3	6 * 8 = 48	3 * 5 = 15	63	18
0.4*0.4	7 * 8 = 56	4 * 5 = 20	76	22
0.5*0.5	8 * 8 = 64	4 * 5 = 20	84	24

•Fibre count per FPGA for six FPGAs/module

Environment	EM Fibres	Hadronic Fibres	Total Fibres	Fan In/Out
0.3*0.3	6 * 6 = 36	3 * 4 = 12	48	18
0.4*0.4	7 * 6 = 42	4 * 4 = 16	58	22
0.5*0.5	8 * 6 = 48	4 * 4 = 16	64	24

Murrough Landon, QMUL

Mapping to jFEX Module

•Orient in phi with modules handling all eta * 0.8 phi?

- •Funny business at high eta and FCAL the same for all modules
 - •Roughly same fibre counts as dividing into eta stripes •Still expect ~256 fibres per module (22 minipods) and eight FPGAs
 - •May need extra fibres at EM barrel/endcap boundary
 - To optimise FCAL ribbons, core shifted by 0.4 in phi

Murrough Landon, QMUL

Uses of Spare EM DPS Fibres

•EM DPS (probably) has some spare output fibres

- •(Unless they are used for GBT to the front end?)
- •Need 20 fibres (16 eFEX + 4 jFEX) for 0.8*0.4 area (1 copy)
- •24 output fibres available (48 for two copies)

•Potential uses:

- •Extra copies of some eFEX fibres to handle corners
- •Extra copies of jFEX fibres to allow for larger jets

•No spare HEC fibres?

•Both above potential uses would need extra HEC & Tile copies

Active Patch Panel?

Recent suggestion to have more active patch panel?

- •Provide extra copies where we need them
- Less coupling between FEX and DPS geometries
 - •Though groups of supercells/towers on single fibres still constrained
- •NB if we do this, would it provide all duplication?

What If No BCMUX?

•Some people are unsure about the BCMUX scheme

- Worry about losing signals with high pileup at 25ns operation
 NB with 50ns operation so far, existing BCMUX not yet tested in anger?
- •No BCMUX implies approximately double bandwidth
 - •NB even going from 6.4 to 10 Gbit/s may not be enough •Unless we drop back to the 1141 scheme or use less dynamic range
 - •With BCMUX we have 110 bits per two TT => one fibre @ 6.4 •Leaving a few spare bits for extra info (quality bits), checksums etc
 - •No BCMUX, have 200 bits per two TT
 - •Might exactly squeeze into 10 Gbit/s, but not 9.6? •No room for extra info (quality bits), checksums etc

What If 10 Gbit/s?

- •Keep the same mapping, allow for no BCMUX?
- •Fewer fibres and assume we can always have BCMUX?

Miscellaneous Notes

- •Hadronic mapping (Needs 4 copies: 2*eFEX + 2*jFEX)
 - Should be OK for Tile from PPM or JEM (0.4 or 0.8 in eta)
 - •HEC from LAr DPS also OK?? (Check!) But only 2 copies?!
 - •However there is a difficult boundary at |eta|=1.5
 - •Need one fibre for 1.5
 eta
 2.0 to carry 10 trigger towers
 •Lower dynamic range or more aggressive non-linear encoding?
 - •Or else we need an extra fibre (duplicated) for HEC 1.5</leta
 - •Similar problem for Tile if we include crack/gap scintillators??

•Readout Checksums

- Proposal to send checksums from DPS to FEXes
 - To avoid readout of FEX inputs unless there are checksum errors
- •How do these fit onto the proposed fibre mapping??

•High eta region (EM)

- •Could use one EM 0.1*0.2 fibre for 2.4</letal<2.5
 - •Or else keep two 0.2*0.1 fibres and send the high eta region just in case?

Murrough Landon, QMUL

L1Calo "hoped for" mapping sketchedStill needs a lot of detailed work...

- Discussion with LAr experts
 - •NB they are currently working to the 0.4*0.2 shape DPS mezzanine FPGA

Documentation, documentation

- •All to be done soon to allow eFEX & jFEX specification
- •LAr WG4 planning a comprehensive mapping document
 - Four sections
 - Detector to LTDP
 - •LTDP input to output
 - •LDPS input to output
 - Input to eFEX/jFEX
 - •I agreed to provide the last section and be involved in earlier stages

Spare: Grids for Doodling

Murrough Landon, QMUL

23