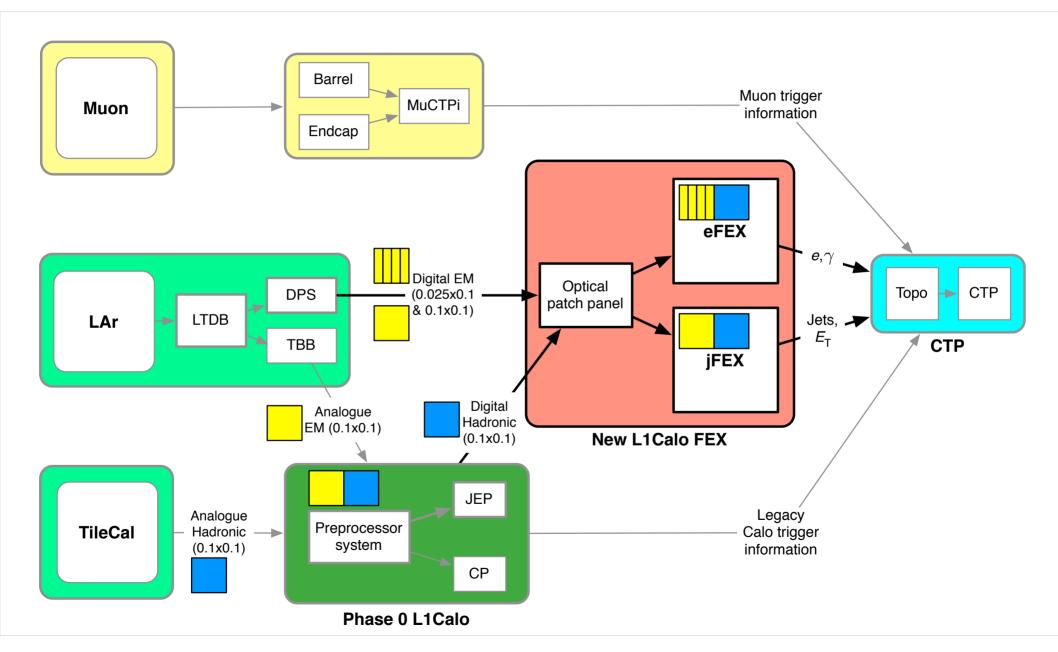
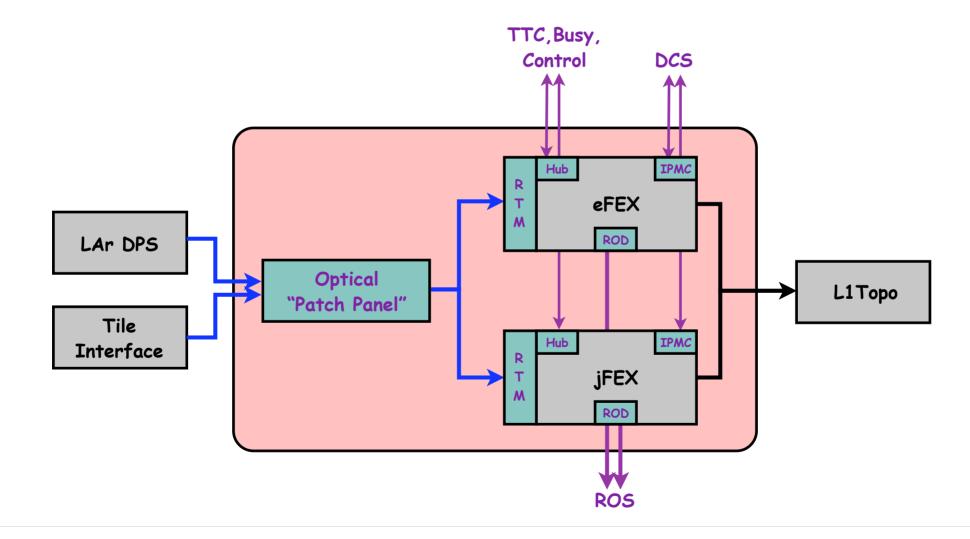


L1Calo: Common Infrastructure


(Reprise of talk at TDAQ IDR)

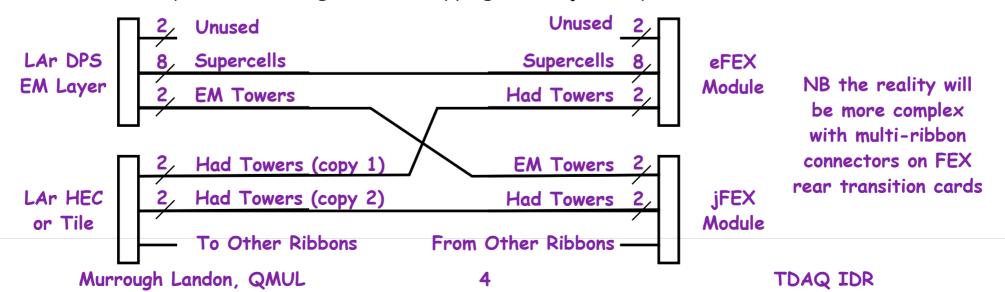
Murrough Landon 13 March 2013

- Overview
- Optical Patch Panel
- Common ROD Daughter Card
- ATCA Hub Module (TTC/Busy/Control)
- IPMC Interface (DCS)
- ATCA Crate Installation
- Firmware and Software
- Schedule for Common Items
- L1Calo Work Packages


Overview

Overview

- Common infrastructure for eFEX and jFEX
 - All the colourful parts of this diagram...



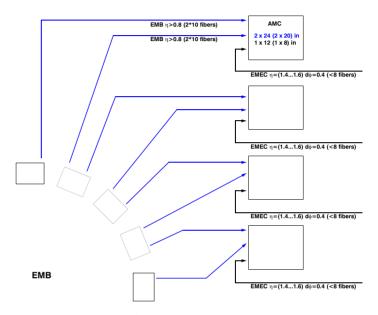
Optical Patch Panel

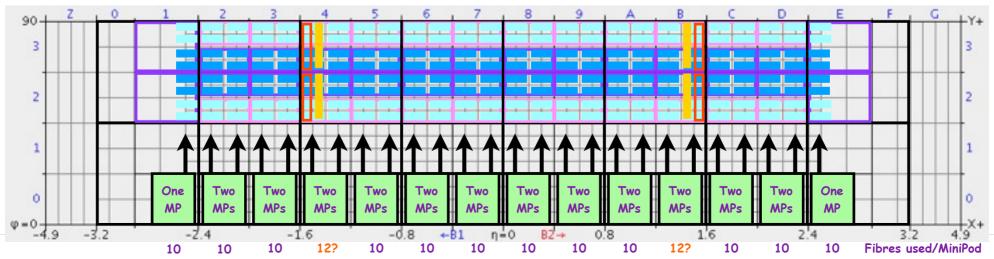
Interface between LAr DPS or Tile and the FEXes

- Mapping onto regular eta phi space for sliding windows
 - •Regrouping fibres into ribbons destined for eFEX vs jFEX
 •Eq fine granularity EM supercells for eFEX, 0.1*0.1 EM towers for jFEX
- Additional passive optical splitting where needed
 - ·LAr DPS and Tile interface mostly provide enough copies of signals
 - •But (probably) the HEC needs additional duplication
 - ·We need two copies to adjacent eFEX modules plus two copies to adjacent jFEX modules
- •Implementation as sets of "octopus" fibre ribbons
 - ·Needs very detailed design of the mappings, then just buy them...

Rear Transition Module

- •Brings bundles of optical fibres to ATCA Zone3
 - ·Rear transition module just a passive mechanical support
 - Fibres grouped into multiway optical connectors (72 fibres)
 - ·eFEX/jFEX modules will have four such connectors

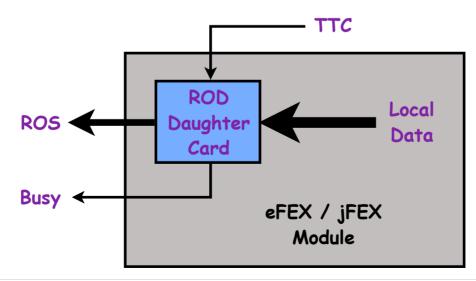



DPS/Tile to FEX Mapping

- Detailed mapping to FEXes needs to be defined
 - Sliding window algorithms need regular eta phi grid
 - May need special handling of some areas eg barrel/endcap boundary
 - Discussions started with LAr
 - ·Many details to be sorted out...
 - ...also with FEX engineers

Sketch for possible handling of EM barrel/endcap overlap (S.Simion)

Design study for "worst case" mapping to eFEX module (0.5*0.5 environment)



ROD Daughter Card

Interface to DAQ

- · Each eFEX and jFEX module acts as its own ROD
 - •Needed for phase 1, must be compatible/upgradeable for phase 2
- Implement ROD functionality as a daughter card
 - ·Common hardware for eFEX and jFEX, but different firmware needed
- Emulate current Slink protocol for phase 1
- ·Can change protocol for phase 2 or replace daughter card
 - •But must make sure all the necessary phase 2 signals are tracked to it!

Content of Readout to DAQ

·L1Calo FEXes (and LAr DPS) are DAQ subdetectors

- ·Essential to read out enough to verify operation of the trigger
- Traditional L1Calo model: readout all inputs and outputs
 - Some duplication: output of PPM is input to CPM etc
 - •But data volume reduces dramatically with each pipeline step
- ·We will certainly read out the outputs of FEX algorithms
- ·But replicating DPS output is a lot of data
 - •So we are thinking about sending checksums from DPS to FEXes
 - Then only readout FEX input from DPS if checksums are wrong
 - •Up to some bandwidth limit
- •NB this assumes the LAr DPS data is read out to DAQ
 - •DPS readout is still being discussed (even one copy is quite a lot)
- •L1Calo view is that:
 - •BCID result for each supercell is mandatory for every event
 - ADC samples desirable every event (mandatory on day 1, reduce later?)

ATCA Crates

- Both eFEX and jFEX will be implemented in ATCA
- ·We will follow the evolving ATLAS ATCA standards
 - ·ATLAS ATCA recommendations drafted not yet final?
 - •In some cases multiple options are suggested
- We expect to have:
 - •14 slot crates, vertical air flow, two crates per rack
 - LAPP IPMC daughter card
 - · Hub module function for ethernet, TTC, busy
 - Module configuration and control via IPbus (Ethernet/IP)
 - •Firmware and software package developed by CMS
 - •Interest in this also from other ATLAS subdetectors (LAr) and LHCb

ATCA Control Hub

- ·ATCA crates need one (or two) hub modules
 - Several undemanding functions
 - •Implement in low end FPGA, possibly on a daughter card
 - · Capability present on all eFEX/jFEX modules but only used in hub slots
 - Some functions could be tested on UK High Speed Demonstrator

Ethernet switch

- Route ethernet to other modules in the crate
 - •For high level module control (eg configuring the trigger) via IPbus

TTC hub

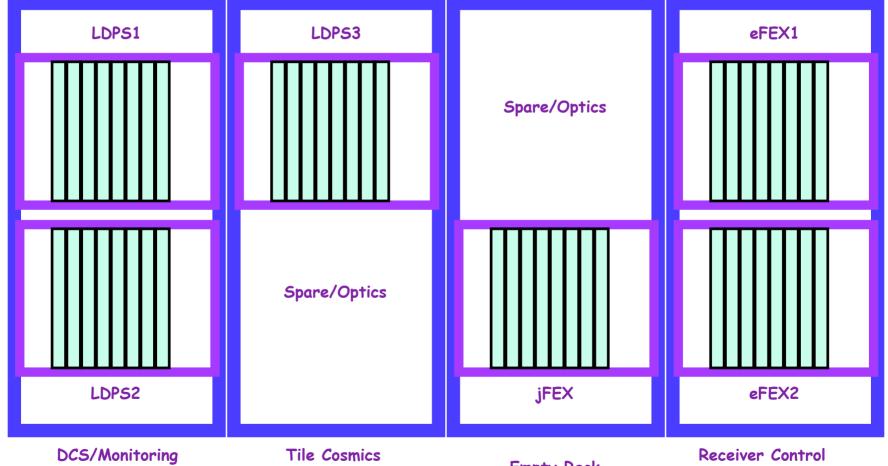
- •One module per crate acts as TTC hub
 - •TTC signals sent over ATCA zone 2 backplane
- · Alternative possibility: TTC fibre to each module

Busy aggregator

Collect BUSY signals from ROD daughter cards in the crate

IPMC (DCS Interface)

- ·ATCA crates need low level IPMC interface
 - ·Low level module control, ie switching on and off
 - Collect voltage/temperature information via I2C buses
 - This should be the interface to DCS
- ·LAPP have produced a suitable daughter card for this
 - · Very low profile miniDIMM minimal space impact on board
 - ·Being recommended as the ATLAS standard
 - · Available in the summer



Rack Space in USA15

·L1Calo and LAr need 3 or 4 racks in USA15

·Should be OK: but need to (re)move less critical equipment

LAr DPS L1Calo FEXes

=> Move y 29-02 A2

=> **Remove** y.28-02.A2 Empty Rack

=> Move/Remove? y.26-02.A2 TDAQ IDR

Firmware

ROD daughter card

- Needs firmware for both eFEX and jFEX data formats
- For the current L1Calo ROD, firmware was a major project

Control hub

- ·Smaller body of firmware needed here too
- IPMC interface
 - Hopefully not much to do here?

13

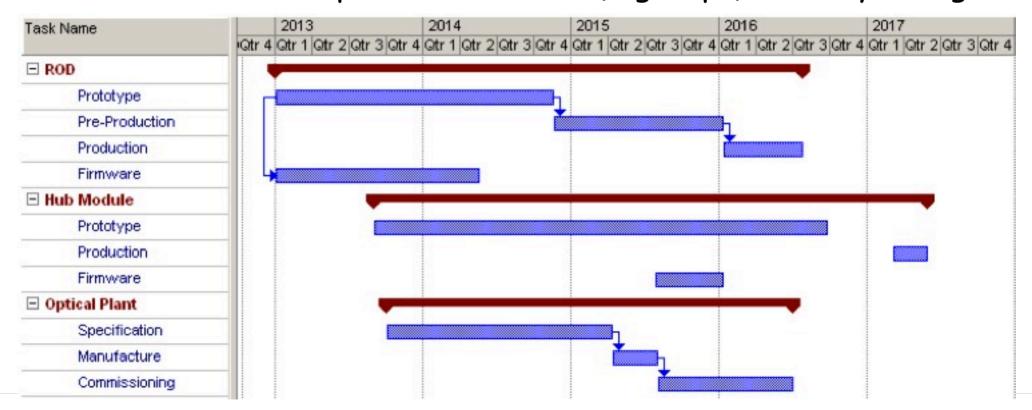
Software

Online Software

- ·New ATCA modules will be included in L1Calo online software
 - ·We already need to do this by phase 0 for L1Topo
- Preliminary scheme outlined
 - •Replace CERN VME driver and L1Calo "HDMC" (Hardware Access) by IPbus software suite developed by CMS (comes with matching firmware)
 - •Keep higher level "module control" software layer in L1Calo
 - •Run control layer will see common interface for VME/ATCA modules
- ·We also need bit level hardware simulation (test vectors)

Offline Software

- New modules also need simulation in offline software
- ·Used to validate trigger with P1/TierO monitoring


Simulation Studies

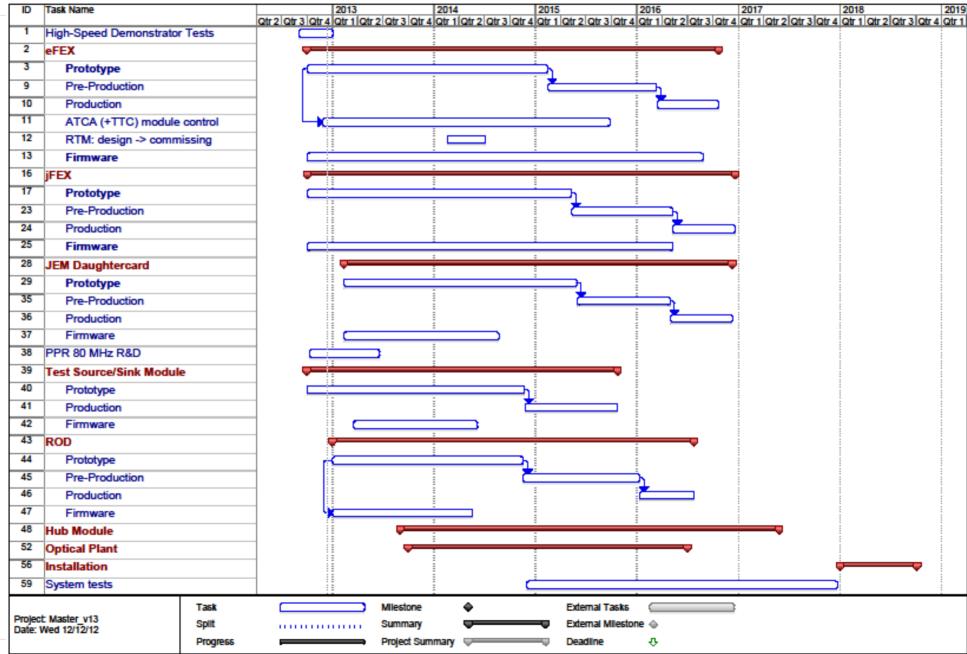
Continuing work to optimise the design parameters

Schedule: Common Items

- Specification starts now/soon
 - ·Generally follows specification of the main modules
 - ·But must all be defined by the time of the TDR
- •Effort: need ~16 FTE over 2013-2018 for (WP3&5)
 - •Institutes: so far part of UK eFEX (4 groups) but may change

Summary & Steps to the TDR

- •Initial design for common infrastructure exists
 - Detailed specification work will start soon
 - Mostly following the specification of the main modules
- ·Before the TDR we need to
 - Finalise mapping details soon for eFEX/jFEX design
 - Depends on decisions about BCMUX, link speeds, jet environment, etc
 - •Iterative process involving LAr and L1Calo constraints started but needs to converge
 - Continue tests on optical links
 - ·Viable link speeds, passive optical splitting etc in optical patch panel
 - Agree readout policy with LAr



L1Calo Work Packages

	Work Package	Effort Required 2013-2018/FTE		
		eFEX	jFEX	Total
WP1	eFEX module (h/w and f/w)	19	-	19
WP2	jFEX module (h/w and f/w)	-	17	17
WP3	ROD module (h/w and f/w)	7		7
	Hub module (h/w and f/w)	5		5
WP5	Optical plant	2.5	1.5	4
WP6	Hadronic input logic (h/w and f/w) assumes option 3	5		5
WP4	Test module (h/w and f/w)	10		10
WP7	DAQ and online s/w	11	8	19
WP8 & WP10	Offline s/w and performance studies and algorithm studies	9	9	18
WP9	Integration, installation and commissioning	15	6	21

L1Calo Overall Schedule

