

L1Calo Calibration

Murrough Landon 27 February 2013

- Introduction
- •Parameters used to configure L1Calo
- Calibration procedures and analysis
- •Questions to calorimeter experts

Level-1 Calorimeter Trigger Architecture

L1Calo Calibration uses

- •Receivers
 - Main energy calibration
 - Pulser vs physics corrections

Preprocessor

•Digitisation, synchronisation, BCID, filters, pedestal subtraction, noise cut

L1Calo Configuration Parameters

•For every trigger tower we have:

- Time of pulse peak (1ns precision, 0-399ns range)
 - •NB large range needed to align barrel and endcap signals
 - •Actually 400ns is not quite enough to cope with the calibration regime
 - •For calibration we have to adjust readout pointers too
 - •For the DPS I would recommend longer synchronisation delays
- •Parameters to set the pedestal (slope & offset of DAC)
- Measured pedestal value
- •Five FIR filter coefficients and overall scale ("drop bits")
 - •Different sets for EM barrel/endcap/overlap, HEC, Tile & FCAL1/2/3 •Also special filters for ~10 Tile towers with very bad min bias switching noise •Here we use negative first & last coefficients to subtract large and slowly varying "pedestal"

Saturated BCID parameters

- •Thresholds for 1st & 2nd samples and associated Et ranges
- Lookup table contents (final Et calibration)
 - •Parameterised as slope, offset (pedestal) and noise cut

Timing

• Timing Calibration

•Aim to sample pulse at the peak

•Physics pulses fitted with gauss/landau or landau/landau

•Pulse time derived with ~1ns accuracy

•Stable for ~2 years (apart from systematic clock shifts)

•PPM pedestal slightly sensitive to temperature

- •0.1 ADC count (25 MeV) change per 0.1 degree
 - Small but adds up over large objects (EtMiss)
 - •USA15 cooling water has 0.1 degree variation with 7-8 minute period
- •Pedestals also vary with PHOS4 timing
 - •Few ADC counts across 25ns
 - •Different pedestals needed for calibration vs Physics
- Pedestals also very sensitive to pileup
 - •Effect largest at start of bunch train
 - •Pedestal shift slightly during each lumi fill
- Measured weekly (or more often)

Monitored for each lumi block during a run

•Filter implemented in current PPM ASIC

- Hard coded algorithm but programmable parameters
 - •Five parameters, central three must be positive (or zero)
 - •New MCM after LS1 will have programmable algorithm

•Filter output

- $\boldsymbol{\cdot} \boldsymbol{\Sigma} a_i x_i$ where a_i are 4 bit coefficients, x_i are 10 bit samples
 - •Result ~15 bits for real pulse (~14 bits in FCAL)
 - •Drop 5 (4) bits to give 10 bit value to lookup table
- •Optimise usage of the lookup table
 - •Simultaneously try to:
 - Match coefficients to pulse shape
 - •Scale coefficients to use the whole 10 LUT input range
 - •Otherwise we lose some energy resolution

\bullet Then fill LUT with conversion to GeV

•LUT slope depends on pulse shape and filter coefficients

Lookup Table (LUT) Slopes

LUT slope calibration in a Nutshell

- When a peak is found- the Look Up Table (LUT) is used to convert the output of FIR filtering intp an energy.
- It is configured by 2 parameters- the LUT slope, and the offset (subtracts the effect of pedestal and implements noise threshold).
- For the purpose of this talk all you need to know is...
- To optimise LUT coverage- fit FIR output (before dropped bits) as a linear function of peak ADC, then:

$$LUT_{slope} = rac{2^{drop \, bits} imes 1024}{gradient}$$

 When calibrating- use a high luminosity run and calculate LUT slopes on a tower-by-tower basis.

	~		
Sarah Williams (Cambridge University)	L1Calo Joint Meeting	October 11, 2012 4 /	17

- •Filter and LUT used for non-saturated pulses
- Special algorithm for saturated pulses (>255 GeV ADC)
 - •Determine correct BCID from slope of rising edge
 - Set thresholds on two ADC samples before saturation
 - •Detailed study to set thresholds and check performance
 - •Algorithm expected to be OK up to 3.5 TeV
 - •Revisit this study for phase 0...?
 - New MCM would allow other algorithms
 - •Though still limited by the same saturation level

Energy Calibration

•L1Calo only does electronic calibration

- Use LAr/Tile charge injection pulser systems
- •Compare L1Calo Et with calibrated Et from full calo readout
- •Assumption is that LAr/Tile calibrate their readout to true Et

•Weekly calibration runs analysed on the CAF

- Typical pattern
 - •Run(s) with receiver gains set to one
 - Derive required calibrated gain
 - •Two LAr gain one runs needed for barrel/endcap overlap components
 - Run with receiver gains set to physics gains as cross check
 NB actually not quite the physics gains due to pulser to physics corrections
- •End results: sets of receiver gains required for correct L1Calo response to calorimeter charge injection pulses

•However we also compare calibration in physics data...

Energy Calibration: Plots (LAr)

•Gain update needed after HV change in EMEC-A (8 Nov) •Also some intermittent problems in the C side overlap region

Eta-phi map of EM gains: (gain-reference)/reference

Murrough Landon, QMUL

Energy Calibration: Plots (Tile)

- Typical set of drifted Tile towers (reason not understood)
 EBC01 in emergency mode but already at maximum gain
 - •NB ignore HEC region in this plot (not measured in this calibration)

Eta-phi map of HAD gains: (gain-reference)/reference

Murrough Landon, QMUL

•Apparent gain changes between two runs 5 mins apart (Gain-ref): 218359 compared with 218364

Murrough Landon, QMUL

Pulser to Physics Corrections

- •Energy calibration is done using maximum ADC value
 - Compare peak ADC with calibrated LAr/Tile Et
 Easier to disentangle other effects from pulse shape, filters, etc
- •But pulser and physics pulse shapes are different
 - •Additional "pulser to physics" corrections required (~1-2%)
 - •Relative calibration of L1Calo and full Calo readout compared
 - •Both for peak ADC and for final L1Calo Et (LUT output)
 - •Look for linearity (or not) in different calo regions in each case
 - •Recently also looked at better treatment for overlap region

Physics "Gain" (L1Calo/Calo)

Murrough Landon, QMUL

Symmetric n–slice gains: EM Layer

Symmetrically in η ;

Per "receiver" η slice;

Gain = Calo/ADC = Et(Calo)/Et(L1Calo)

L1Calo Calibration Discussion, Vidyo, November 7th 2012

Murrough Landon, QMUL

- •Energy calibration uses calibrated LAr Et
 - •This includes any corrections for non-standard HV
 - •Also correction for known dead (disabled) cells
- The LAr conditions are not completely stable
 - •LAr regularly adjusts HV
 - Typically for small region, occasionally larger scale shifts (eg EMB PS)
 - •Occasionally cells are disabled due to noise
 - And sometimes enabled again

•L1Calo response

- •Small changes can wait for next weekly calibration
- Larger changes we would like to correct quickly
- •Gain predictor developed to do this
 - •Command line script run by expert when needed

Gain Predictor Methodology

- •Compares current status with that at last calibration
 - •Or an earlier calibration marked as a reference
- Looks for changes in the HV corrections per layer
 - •Uses weights for typical energy deposition per layer
 - •For EM HV corrections are either presampler or the rest together
 - •In HEC, each layer has separate HV corrections
 - •Energy per layer can be very different in physics & pulser
 - •Presampler fraction varies with eta in physics but is constant for pulser
 - Back layer of HEC is overrepresented in the pulser compared to physics
 Real example: large HV correction to HEC 3rd layer (C side phi ~2) resulted in large overcalibration in L1Calo until fixed by the gain predictor technique
 - •For HEC this issue will still be there in phase 1
 - •Though the EM will be OK as the supercells can be corrected layer by layer

•To do

- •Use this also in standard calibration analysis
- Extend to handle dead/disabled cells

Murrough Landon, QMUL

Gain Predictor: EM Profiles

Murrough Landon, QMUL

19

Gain Predictor: HEC Profiles

Questions to Experts: LAr (1)

•LAr

- •Generally OK and well understood
- •What is expected for rate of HV corrections after LS1?
 - Subjective feeling is that things get worse with lumi
 - •Will PS HV have to be dropped again?
 - •Will attention to power supplies improve stability?
- •What we should correct via pulser vs other methods?
 - •Currently HV corrections and dead cells are automatic in CAF analysis
 - •Taken into account when calibrated LAr Et is calculated
 - •Experience with gain predictor shows layer weights are wrong
 - •Can be significant effect with non-uniform HV corrections
 - •Will this get worse in phase 0 and phase 1?
 - •Maybe revisit and take HV corrections out of the CAF analysis
 - •Could do HV corrections by import gain predictor ideas into CAF analysis procedure
 - •Separate set of folders multiplied to get final receiver gain
 - Similar question about dead/disabled cells
 - •Currently "Dead Physics" and "Dead Readout" are corrected for

Questions to Experts: LAr (2)

•LAr

- •New MCM will allow for more sophisticated filters
 - •We have investigated some ideas...
 - •Any suggestions from LAr (or Tile) from current ROD or offline filters?
 - •How to deal with increasing pileup etc
 - •What is planned for LDPS in phase 1?

Questions to Experts: Tile

• Tile

- Still some non-understood issues
 - •We still see variations between two runs 10 mins apart
- •How to better communicate about individual channel problems?
 - •When can we trust very high/low gains from pulser?

Overall drifts

- •Cs scans, in between laser scans.
 - •Is it correct there is still a 1-2% drift on top?? (In Physics??) [Tile talk in ATLAS week]
 - •If so what should L1Calo do?
 - •Should we take an overall drift from them
 - •Our calibrations get corrected energy
 - •What is 3.5% down drift? (a) Physical cause (b) is it included in Cs constants we use?
- •L1Calo: Sten sees 1-2% drifts (Physics). Are these the same?

Questions to Experts: Upgrade

•eFEX and energy reconstruction

- What type of filters does the DPS plan to use?
 How is it planned to do calibrations is anyone thinking about this?
- •Whats the state of simulation of inputs to eFEX?
- •EMEC presampler gain wrong (too low by factor ~3)
 - •Wrong on TBB? So should be correctable for phase 1?
- •EMEC-C "zigzag" region
 - •Presume still with us for phase 0
 - •But correctable at phase 1?

- L1Calo calibration generally OK
 - •At the level required (~1%)
- •But Tile shifts and drifts not all understood
- •LAr: work on moving layer weights to CAF analysis?
- •New MCM will allow more sophisticated filters

Backup/Notes

Murrough Landon, QMUL

Analogue Chain

•LAr

Preamp, FEB, shaper+sum, layer sum, tower builder, long cable
Tile

•PMT, 3-in-1, adder, long cable, patch panel, short cable

•Common

- •Receiver
 - Shaping, 12 bit variable gain amplifier (VGA), remapping
 VGA is where the energy calibration is implemented
- Short cables
 - Some patch panels for final remapping of difficult regions
- •Preprocessor:
 - •Analogue input: DAC to set pedestal
 - •ADC: strobe at the peak (1ns precision via PHOS4 chip)

Links to Various Talks

•Filter parameters

•http://indico.cern.ch/getFile.py/access?subContId=2&contribId=0&resId=0&materialId=slides&confId=126262

•LUT Slopes

•http://indico.cern.ch/getFile.py/access?subContId=0&contribId=0&resId=0&materialId=slides&confId=112869

Saturated BCID

•http://indico.cern.ch/getFile.py/access?subContId=2&contribId=4&resId=0&materialId=slides&confId=53510

- •http://indico.cern.ch/getFile.py/access?contribId=1&sessionId=1&resId=0&materialId=slides&confId=66571
- •<u>http://</u>indico.cern.ch/getFile.py/access?contribId=33&sessionId=3&resId=0&materialId=slides&confId=68140