

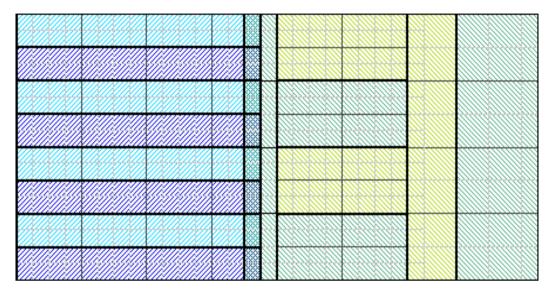
TBB-DPS-FEX Connectivity

Murrough Landon 23 April 2012

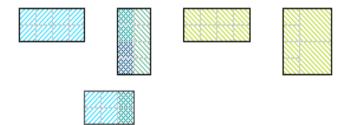
TBB layout & fibres?

Overlap region
1341 region

DPS layout?

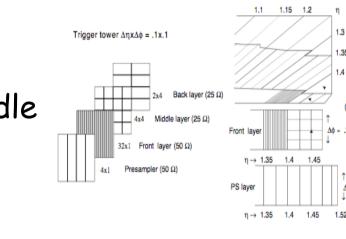

eFEX layout?

Assumptions and open questions



TBB Layout

- TBB: up to 32 towers
 - Various geometries
- dTBB: assume 1:1 map?
 - LAr like mezzanines
 - 4 mezzanines/dTBB
 - 8 towers per mezzanine
 - 80 supercells (1441)
 - ADC: max 12 bits?
 - 80*12 = 960 bits
 - LAr aim for 10 Gbit/s
 - Need 5 out of 12 fibres
 - Say 6 with one redundant
 - SNAP12 half used



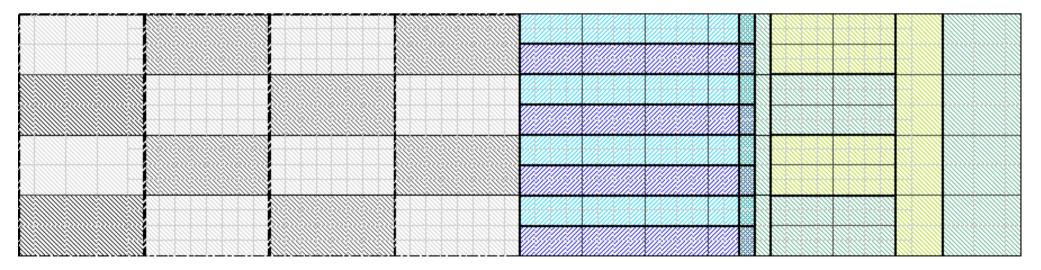
dTBB Mezzanines (8 towers, 80 supercells)

- Barrel component: 1001
 - Presampler
 - "Barrel end": Sum of ~3 front + 1 middle
 - "Barrel end" handled by back layer FEB
- Endcap component: 0140
 - Front: low granularity => 1 supercell
 - Middle: 4 supercells as elsewhere
- Merging to 1141?
 - Can 5 fibres per dTBB mezzanine be grouped as:
 - 1 fibre for PS + back, 2 fibres Front, 2 fibres Middle?
 - If so may be able to merge overlap region as 1141 into DPS
 - Assumes there could be fibre patching between dTBB and DPS
 - And might lose any redundancy in fibres from dTBB?

Granularity of the trigger towers for the EMB

1.3

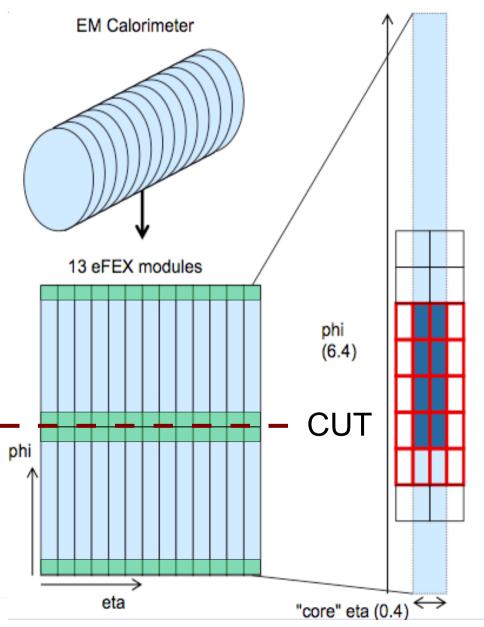
¹(50 Ω)



- Two eta bins per endcap have 24 strips per tower
 - Gives six sums of four cells from the shaper
 - LAr suggests providing equal width 3 supercells here
 - Excel spreadsheet from Hucheng Chen [CHECK]
 - I wonder if we would prefer four unequal width supercells?
 - Eg 0.016, 0.033, 0.033, 0.016
 - If thats feasible in the layer sum board...
 - (Assuming we want the 1441 option in general)

- LAr still like mezzanines...
 - Suggested design has 4 mezzanines on one ATCA carrier
 - Mezzanine (toy layout?) has four minipods and one FPGA
- Inputs: two 12 fibre ribbons?
 - Regroup two half used dTBB SNAP12s to one DPS SNAP12?
 - One DPS mezzanine handles four dTBB mezzanines?

• If so, one mezzanine handles 32 towers, eg 4*8 or 8*4 shape



- Bandwidth: output >= input
 - BCMUX halves output bandwidth (to eFEX)
 - But duplication at source doubles it, also need output to jFEX
- DPS mezzanine: two input and two output minipods?
 - If 100% duplication, have one minipod (12 fibres) "core" out
- Output to eFEX
 - "Sam scheme" has 8 towers on 3 fibres
 - Assumes 1141 if 6.4 Gbit/s links, or 1441 if 10 Gbit/s links
 - Need 12 fibres for output to eFEX: no room for jFEX!
 - Unless we have less than 100% duplication: can we find a geometry that works?
- Output to jFEX
 - "Sam scheme": 16 towers/fibre => 2 "core" fibres/mezzanine
 - Any way to group jFEX outputs at the module level?

- What is the maximum input per module??
 - Even Sams two crate
 scheme is considered too
 dense
- Cut Sams single crate scheme in half at eta=π
 - Needs 25% passive optical fanout (as well as 100% duplication at source - at least for 4*4 or 5*5 environment)
 - More modules but matches dTBB/DPS geometry?

Murrough Landon, QMUL

Assumptions and Open Questions (1)

- Assume we will never want EM triggers for |eta|>2.5
- Never want finer than 0.2 granularity in inner EMEC?
- Assume all fanout is optical: is that totally definite?
- Link speeds between DPS and eFEX/jFEX
 - Does 6.4 vs 10 Gbit/s choice determine 1141 vs 1441
 - Or do we need to work out a 1441 geometry for 6.4 Gbit/s?
 - Impact on DPS design if it has 10 Gbit/s in but 6.4 out...?
- Environment size for eFEX?
 - 0.3*0.3 reduces required optical fanout but feels too small
- Data content of links?
 - Do we need more than Et (precise time, pulse quality, sumE)?

Assumptions and Open Questions (2)

- Granularity of jFEX?
 - 0.1*0.1 vs 0.2*0.2 has big impact on DPS output to jFEX
 - When do we need to make a decision on this?
- Maximum granularity from present FCAL for jFEX?
 - Allowance for inputs from future new FCAL
- Eta phi geometry of phase 2 Tile RODs
 - Affects possible geometries of hadronic fibres already now
- Density of ATCA modules ...
 - LAr designs (16 minipods @ 10Gbit/s + 4 FPGAs on 4 mezzanines per module) seem more ambitious than ours?