

Phase2 Level-0 Calo Trigger

Murrough Landon 27 June 2011

- Phase 2 Overview: LO and L1
- LOCalo Functionality
- Interfaces to calo RODs
- Interfaces to LOTopo

Baseline Phase 2 L1Calo Architecture

- Real time algorithms:
 - Find EM clusters, Tau/hadrons
 - Use fine granularity as much as possible to discriminate against QCD
 - Find jets
 - Ideally on the same module, but separate jet system is an option
 - Possibly larger size than at present, eg 1.2*1.2 in eta*phi?
 - Sum E, Et and missing Et components per LOCalo module
- Transmit results
 - EM/Tau/Jet RoIs and energy sums in real time to LOTopo
 - On LOA also send them to L1Track and L1Calo
- Readout
 - Buffer results for eventual L1A
 - Also send LO readout to RODs for monitoring at LO?

- Sliding windows, now with finer granularity
 - Limitations will be fanout and number of inputs per FPGA
 - Expect O(50) 10 Gb/s links into Virtex 7
- Adopt L2 EM/Tau ideas
 - L2 "R core": ratio of 3*7 to 7*7 LAr middle layer cells
 - LOCalo bandwidth might require middle layer cells summed in pairs
 - NB initial simulation results are disappointing for calo only trigger
- Investigating benefits of larger jet environment...
 - Present 0.8*0.8 eta*phi jets use 0.4*0.4 RoI maximum
 - Better to know if 0.8*0.8 area is a maximum within its environment
 - Problem: much larger fanout and more fibres per FPGA
 - Larger environment with 0.1 granularity may need separate jet system
 - Needs some simulation work...

- Optical fanout and patch network
 - Fibres from calo RODs need to be duplicated/reorganised
 - Fanout across crate boundaries
 - Regroup fibres for optimum layout of LOCalo modules?
 - Merge EM and hadronic fibres in same eta*phi area to minimise crossing tracks
 - Separate LO and L1 fibres from the same ROD
 - May need active components if passive fanout is not good enough
 - Significant component which needs some R&D work

- Rear transition modules
 - Optical receivers and fanout to adjacent LOCalo modules
 - Possible alternative: more optical and less electrical fanout
- Custom ATCA backplane
 - Transmission from RTMs to modules in same/next slots

LOCalo Components (3)

- LOCalo module (Sam)
 - Cover 0.4*1.6 eta*phi
 - Unless 0.8*0.8 shape better for fat jets?
 - Inputs via backplane
 - Find EM/Tay and Jet on same module
 - In separate FPGAs
 - Jet FPGAs resolve EM/Tau overlaps
 - Transmit combined RoIs to LOTopo
 - Four full ATCA crates
 - Or 8 for 0.8*0.8 option?

- Auxiliary modules
 - Clock/trigger distribution ("TCM")
 - But may not be room for a dedicated module per crate
 - Distribute GBT signals directly to each module?
- Readout
 - LO ROD to gather data for LO accepted events
 - Local LO event building to monitor trigger performance at LO?
 - Buffer data for readout to DAQ on L1A

- Four full ATCA crates (14 or maybe 16 slots)
 - Each crate processes one quadrant in phi
 - Alternative with 0.8*0.8 modules uses 8 partly full crates
- Two (or four) racks
 - Plus same again for fibre empire?

Calo ROD - LOCalo Interface

- Calo Readout Driver (ROD) functions for LOCalo:
 - Derive calibrated Et from digitised pulses
 - No issues with analogue saturation
 - Assign Et to correct bunch crossing
 - Provide quality flags from optimal filter (pile up, etc)
 - Form sums of calorimeters cells into "mini towers"
 - Definition of mini towers (or "LO primitives") to be defined
 - EM layer: both fine and coarse sums (for EM/Tau & Jet triggers)
 - Possibly run algorithms on cells within one ROD FPGA
 - Eg piO rejection using LAr EM strips
 - Transmit mini towers to LOCalo
 - Pipeline full data (for every cell) for use by L1 stage (& DAQ)

- Baseline: 10 Gb/s links => 200 bits per bunch crossing
 - Assumes 25ns bunch crossings: half for 50ns LHC?
- Hadronic layer (and coarse EM sums for jet trigger):
 - One 10 Gb/s fibre link per 0.4*0.2 (or 0.2*0.4) in eta*phi
 - Can have finer eta*phi and depth granularity than now for jets
- EM layer fine granularity for EM/Tau algorithms:
 - One 10 Gb/s fibre link per 0.1*0.1 tower
 - 200 bits: more detail on eta, phi and depth
 - Concentrate bandwidth on middle layer?
 - Contains most of the energy
 - Heavily sum the strips layer
- Links to L1Calo
 - Originally said 1 fibre per 0.4*0.2 (LAr): but may need more!

- One (or two) fibre(s) per LOCalo module
 - 200 (or 400) bits per 25ns bunch crossing
 - Perhaps 60-80 bits for Et, Ex, Ey, E
 - Leaves 120 (or 320) bits for RoI objects in 0.4*1.6 area
 - 25 bits per object => ~five (or twelve) RoIs per LOCalo module
 - Five RoIs may be a bit tight, twelve seems luxurious
 - 64 (or 128) inputs per LOTopo FPGA might be OK (or is too much)
- Suggestion: separate objects from sums
 - One (underused) fibre for Et, Ex, Ey, E
 - Processed in dedicated LOTopo FPGA
 - Second fibre for about eight EM/Tau/Jet RoIs

LOTopo Implementation & Algorithms

- Implementation much like phase 1 proposals?
 - Few modules in (part of) one ATCA crate
 - All (or most) fibres duplicated to each module
 - But different modules may run different sets of algorithms
 - All energy sum fibres to one module? Results via backplane
 - 64 LOCalo RoI fibres plus muon fibres may be too much for one FPGA

Algorithms

- Also similar to phase 1
 - Benefitting from greater precision in eta, phi and Et
 - Though EM/Tau overlaps with Jets hopefully removed at LOCalo
 - Scope for additional algorithms...
 - Possible benefit in having total E for use in missing Et algorithms?

- Already designing ATCA demonstrators for phase 1
- More demonstrators being planned
 - Study PCB simulation: really understand high speed links
 - Tests needed for optical fanout and patching
- Medium term: build up "slice" of full phase 2 system

- Calo ROD LOCalo links: bandwidth and organisation
 - Changes have major impact on ROD and LOCalo organisation
 - Status of LAr LOCs6?
 - Impact of increasing eta*phi space of "jet" fibres
 - What if (when?) LHC irrevocably decides for 50ns bunches
 - Need to recheck required bandwidth to L1Calo
- Usefulness (or not) of fine granularity
 - More simulation and/or new algorithm ideas
 - Keep high granularity LOCalo as preferred option in case of surprises
- Implications of larger jets
- R&D programme, timescale, division of labour...