

L1Calo Upgrade Phase 2

Murrough Landon 22 April 2010

- Introduction
- Scenarios: L0 and L1
- Phase 2 LO/L1Calo System
- Latency
- Timescales and Planning
- Logistics
- Next steps

L1Calo Phase 2 Introduction

- Assumes replacement of calo front end electronics
 - Fully digital system, no analogue signals for the trigger
- Every calo cell digitised on detector and transmitted to new calo RODs every bunch crossing (160 Tbit/s)
- Calo RODs preprocess the digitised pulses
- Extract Et, assign to correct bunch crossing
- Perform some summing of cells to "mini towers"
 - Finer granularity (eta, phi, depth) than the present trigger
- Transmit mini towers to L1Calo (~40 Tbit/s?)
- Require minimum latency
 - New RODs to be located next to new L1Calo in USA15

Scenarios: Level 0 and Level 1?

- Probably split present L1 trigger into L0 and L1 stages
 - Required for the regional (RoI seeded) L1Track trigger
 - Not necessary for the standalone L1Track trigger
 - Unless there are permanent latency constraints from muons
- Latency requirements
 - For regional L1Track, need L0 RoIs in USA15 within $2-3\mu$ s
 - Present muon readout needs L1A on detector within $3\mu s$
- Likely scenario:
 - New LOCalo + LO topological processor + LO CTP
 - Provides LOAccept and LO RoIs within about 2.5μ s
 - Compatible with regional L1Track and existing muon readout
 - Possible L1Calo stage refining L0 decision in parallel with L1Track
- Less likely?
 - New single stage L1Calo in parallel with standalone L1Track

LO/L1Calo Functional Block Diagram?

Phase 2B: New LOCalo Used as L1

LOCalo System

- Receive ~40 Tbit/s from new calo RODs
 - Up to 200 bits per 0.1*0.1 EM tower per BC, 25 bits hadronic?
- Baseline architecture: phi octant system
 - Eight ATCA crates each handling all eta for one octant in phi
 - Single processor module (~8 per crate) for EM/tau/jets
 - Might need separate jet processor if bandwidth per FPGA is limited
 - Sliding windows with fine granularity (eg 0.05*0.025?)
 - Import algorithms from current level 2
- Results each BC to LO topological trigger
- Readout via new (L1Calo) RODs in the same crate
- Used as input to L1 trigger before ID upgrade

LO Topological Processor

- Receive ~1-2 Tbit/s from new LOCalo
 - Also inputs from new MuCTPI
 - Present (or upgraded?) RPC/TGC triggers rebranded as LOMuon
- Similar architecture/design to phase 1 TP proposals
 - Phase 1 TP could be prototype of phase 2 version
 - Or already the final one?
- TP modules running variety of topological algorithms
 - Input data fanned out optically => scalable system
 - Readout via new common L1Calo ROD
- Outputs:
 - LO trigger items to CTP
 - Could be existing CTP until ID upgrade and LO/L1 trigger split?
 - LO RoIs to future L1Track trigger
 - Maximum expected LOAccept rate of 500 kHz

Possible L1Calo Stage (After L0)

- Possibility of L1 refinement of LOCalo trigger
 - Only in the scenario with separate LO and L1 triggers
- LAr/Tile RODs pipeline full granularity data
 - Et and time for every cell
 - Full LAr strip data available: good for $\pi 0$ rejection
- Send to L1Calo stage on receipt of LOAccept
 - Rate <500 kHz, one LOA every 2µs
 - Roughly 4 Mbits per LOA => 2 Tbit/s average (derandomised)
- Refine original LO RoIs with full granularity data
 - Could run full L2 calo algorithms if possible in firmware?
- Output L1 results to L1 topological processor
 - Readout via new common L1Calo ROD
- Single ATCA crate system?

L1 Topological Processor

- Receives L1 results at LOAccept rate (<500 kHz)
 - Calo, muon and tracks
- Runs more sophisticated algorithms than LOTopo?
- Otherwise similar architecture
 - At lower data rate
- Output to new CTP
 - And to new level 2?
- Readout via new common L1Calo ROD
- Single ATCA crate system

Latency

- New LO trigger latency limited to 2.5µs (in USA15)
 - Less than 3.2μ s back on the detector
- Early LAr estimate: ~1.0µs (40BC) up to ROD outputs
 - Includes ~70m fibres from detector ($0.35\mu s$)
- Subsequent cable/fibre paths:
 - 15m ROD-LOCalo, 10m LOCalo-Topo, 5m Topo-CTP: 0.15µs (6BC)
- Serialisation/deserialisation
 - Expect ~5BC (0.125µs) per stage (using custom chips?)
 - PROBLEM: Tile measured up to 0.4μ s in FPGA implementation
 - Need FE-ROD, ROD-LOCalo, LOCalo-Topo, avoid to CTP?
 - Three or four (de)serialisations => 0.4µs (15BC)
- Logic: LOCalo+LOTopo+CTP
 - Left about 1μ s for algorithms in firmware...

Timescales

- Phase 2 timescale not yet clear
- If 2017, no time (no point?) for phase 1 upgrade
 - Go straight to phase 2
 - Need to start serious work ASAP!
 - Efforts up to now concentrated on phase 1
- If later, phase 1 may still be useful
 - Treat topological processor as prototype for phase 2
- Need a decision on phase 2 timescale soon
 - Which is adhered to (+- about a year)

Rough Planning

- Time for removal of existing L1Calo (and calo FE) and installation of complete new system will be short
 - Need full system ready and tested 1 year beforehand
 - One year for production and module testing
 - One year for final prototypes & system tests, reviews
 - One year for final design work, start system tests
 - One year for early prototypes, technology choices
 - One year for simulation studies and technology R&D
- Need at least six years from now to installation
 - 2017 is the earliest reasonable date but should be possible

Installation Logistics

- Remove existing L1Calo and Receiver system
 - Mass of underfloor analogue and LVDS cables
 - Long analogue cables from the cavern
 - Hard to remove from cavern cable trays?
- Install new RODs and LOCalo/L1Calo in USA15
 - Mass of new underfloor fibres
 - Lay new fibres from detectors to RODs
- Test complete chain: FE via RODs to LOCalo & ROS
 - Known test patterns useful (as well as calibration signals)
- No time to debug USA15 ROD/LOCalo/ROS system
 - Need to have a full scale test outside USA15 beforehand
 - Request 15 or 20 rack test rig the year before installation?
 - Use limited installation time for what cannot be tested earlier

Fallback (Please Not!)

- A very unwelcome fallback option has been discussed if the Calo FE and RODs are replaced soon but new LOCalo cannot be built on the same timescale
 - Build system to convert data on fibres from new RODs to LVDS electrical signals expected by existing L1Calo CP/JEP
 - Needs all final optical components, many FPGAs, four ATCA crates?
 - Still quite expensive, would be replaced soon, no trigger improvement
 - Really, really hope we would not need to do this!

Murrough Landon, QMUL

ATLAS Upgrade Week

Work Done

- Exploring phase 2 architecture ideas
 - With no guidance from simulation yet
- Interaction with LAr/Tile on interface with LOCalo
 - Layout of FE links to RODs
- Topological processor studies
 - Simulation, algorithm and architecture
 - Aimed at phase 1, a lot can be carried over to phase 2

To Be Done

- Simulation, simulation, simulation!
- Present simulation work has concentrated on phase 1
- Need to seriously start studying phase 2
 - Look at how (or whether) finer granularity can help
 - What is the best way to use it
 - Formation of "mini towers"
 - Algorithms from L2 or other ideas
 - Use of L1Track in combination with L1Calo/L1Muon
 - Work has started on the L1Track side
 - Large program of work not really started