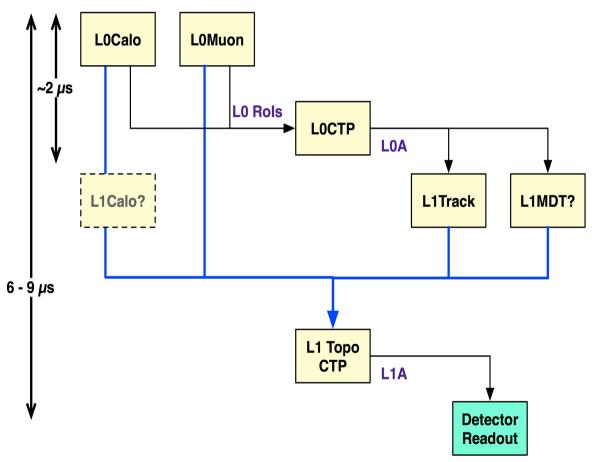


"L1Calo" Upgrade Phase 2

Murrough Landon 19 February 2010

- Introduction
- Granularity and algorithms
- RODs, links and mappings
- LOCalo/L1Calo design?
- Summary

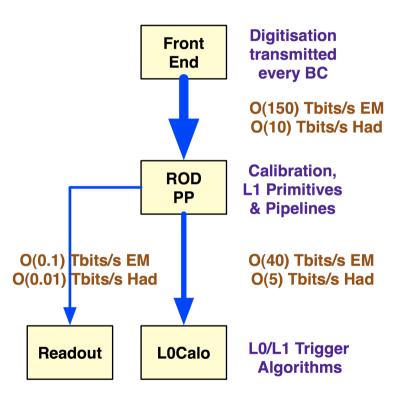
Introduction/Reminder


- LHC phase 2 luminosity upgrade expected ~2020?
 - Aiming to reach about 5*10^34, but no increase in energy
 - Recent suggestion that Calo readout upgrade may be earlier?
- Trigger requirements
 - Still interested in the same objects (W,Z,etc)
 - Hope to keep thresholds as close to 10^34 menu as possible
 - But the interaction rate and pileup is much higher
 - So we will need a significantly more discriminating trigger
 - Over 99% of "phase O" L1Calo electron triggers are jets
 - Use much finer granularity information from the calorimeters
 - Mainly from the EM layer

L1Calo Upgrade Work

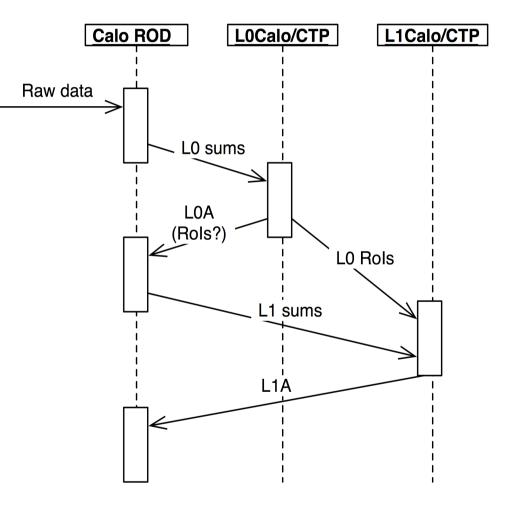
- Mostly concentrating on phase 1 upgrade
 - Expected to be required by ~2015?
 - Topological processor architecture proposed
 - Several people working on simulation
 - Scenario already looks much worse than expected in the TDR
 - Various demonstrator boards being designed
 - Both small scale standalone and ATCA based modules
- Still rather little done towards phase 2
 - Looked at algorithms to steal from current Level2
 - Some thought on interface with RODs
 - Rough ideas on overall architecture and bandwidths
 - No attempt at simulation yet

Likely Phase2 Trigger


- Fast LevelO Calo and Muon RoIs
 - For L1 track trigger(s)
 - Up to 500 kHz of LOAs
- Slower Level1
 topological trigger
 - Using a combination of calo, muon, inner tracker (and MDTs?)
 - May also have L1Calo
 refinement of original
 L0Calo trigger?
 - < 100 kHz of L1As?

Murrough Landon, QMUL

Calo Front End, ROD and LOCalo Links


- Digitise all cells every BC and transmit to RODs in USA15
- Preprocess for L1Calo
 - Et assigned per BC
 - Maybe also precise timing?
 - Fine granularity sums
 - Location within mini towers?
 - Coordinate of EM strip max?
 - Quality flags
 - Pile up detected
 - Fine structure in EM strips?
 - Eg for $\pi 0$ rejection

NB bandwidths are **very** approximate!

Possible Additional L1Calo Stage?

- Suggestion to use the L1 stage also for refining the LOCalo decision
 - Mainly for EM layer (strips)
 - But could (re)process full
 calo data at 500 kHz
- Adds complexity to the calorimeter RODs as well as the trigger
 - Use RoIs? Or just LOA?
- Need a good idea of how it would be used

Granularity

Present L1Calo

- Mainly based on 0.1*0.1 towers in both EM and hadronic
- This is the hadronic layer detector granularity
- But EM layer has much finer granularity underused so far

• L1Calo Phase 2

- Not much change in hadronic layer?
 - Would more depth samplings be useful?
 - Might anyway be worth separating Tile D cells (0.2*0.1 geometry)
- Expect big (tenfold?) increase in EM data to phase 2 L1Calo
 - Need to study what is the most useful information to send
 - Plenty of opportunities for people to work on simulation!

Algorithms

- Basic sliding window with finer granularity (.05*.025?)
- Try to import good algorithms from present L2
- Best EM selection is based on shower shape:
 - Look at ratio of 3*7 vs 7*7 middle layer cells
 - Simulation question: how does this degrade with granularity
 - Suppose we had sums of 2 middle cells (matching back layer cell)
 - Would have to look at 4*7 vs 8*7 cells
- Next best (for π0 rejection):
 - Look for fine structure (double peaks) in strip layer
 - This really needs the full granularity to be useful
 - Probably too much data to ship to LOCalo (could go to L1Calo?)
 - Good candidate for more sophisticated ROD preprocessing?
 - Simulation/algorithm/firmware question: what would be the best way to process and transmit this information?

Links to LO/L1Calo (1)

- EM layer:
 - Suggest one 10 Gb/s fibre per 0.1*0.1 tower (all layers)
 - Allows about 200 bits of payload data per BC (might like more!)
 - Example allocation of bits (all depth samplings separate)
 - Keep phi granularity (middle/back), sum to 0.05 in eta
 - Eight 10 bit (Et+quality?) back layer values [80]
 - Eight 10 bit middle layer sums plus max cell bit [88]
 - Two 10 bit strip layer sums plus 8 coordinate/quality bits [36]
 - Two 10 bit PS layer sums plus 1 coordinate bit [22]
 - Total 226 bits (and we would like some spare bits too)
 - Maybe additional 1 fibre with low granularity (0.1*0.1) sums
 - Useful if jet/energy trigger is in a separate FPGA or module
 - Additional fibres per 0.4*0.2 with extra info for L1 stage?
 - Full strip layer information for $\pi 0$ rejection and track matching?
 - Precise timing for z vertex and/or slow heavy exotic particles?

Links to LO/L1Calo (2)

- Hadronic layer:
 - Suggest one 10 Gb/s fibre per eight 0.1*0.1 towers
 - Allows about 25 bits per tower
 - Energy plus some depth profile (separate D layer?) and quality bits?
 - Good to (slightly) underuse the bandwidth
 - Need to cope with extra cells in overlap regions
 - Eg crack and gap scintillators
 - Tile and HEC cells in 1.4 to 1.6 region
 - Might have up to ten towers per link in places
- More compact in low granularity endcaps/FCAL?

LAr and Tile RODs

- LAr
 - Latest aim is for one ROD to cover one half FE crate
 - Or same number (1800) of cells with different eta*phi shape
 - ROD would contain four TCA mezzanines (with 1 FPGA?)
 - L1Calo (my!) preference
 - One EM ROD mezzanine covers a "domino" of 0.4*0.2 (eta*phi)
 - Larger area in the high eta EM endcap region, HEC and FCAL
 - Aim to keep the shape the same across the eta phi space
 - Easier for fanout but harder in standard EM Endcap region
- Tile
 - Current Tile proposal: ROD covers 3.2*0.1 in eta*phi
 - Much less dense than LAr ROD: could be more ambitious!?
 - L1Calo (my!) preference:
 - ROD covers 0.2 in phi (either split at eta=0 or more dense)
 - Match the EM 0.4*0.2 domino when grouping towers on links

LAr EM Barrel/Overlap Mapping

• Attempt to map links from front end boards (FEBs)

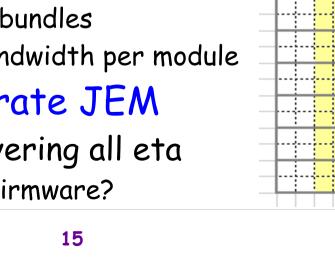
- Tricky regions need duplication/quadruplication of fibres

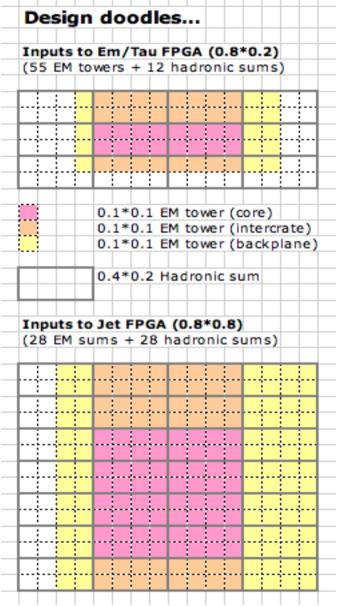
			EM	1 8	Bar	rel	Ha	alf	FE	Cra	ate					E	м	Enc	lca	P	Sp	pecia	al C	cra	ate	e (1.4	-1.	6)	
eta	* 0.	0		* 0	.4		0.8	8	•	1.2		1	.6		1.	4	1.0	6		1.4	1	.6	1	1.4	1	.6		1.4	1	.6
PS * 1														←N							F	N2	z			z				1
	-		N		_	N			N		N							(duad)	- 2	2	F	ZN.	z			z				N (dub)
Front * 7						\square	4	-	\blacksquare	\square	H			←3N					N (quad)		F	z.	z			z	-	+		(dub)
		4N	4	łN	4N	4	N	4N	4N	4	N					1	•••			•••	Þ	z.	z		1	z				D Z
Middle * 4			-				Ŧ			Ŧ			1	←2N		1		i	_		Þ	z.	z		1.	z				2
			4N			4N		- 4	N	2	N	-						g	(peno)		Þ	z.	z			z				N (dub)
Back+BE * 2			-				7	-		+			1	←N				N (quad)	- 10 N		F	z.	z			z				
			2N			2N		2	2N		2N	1							_		F	Z.	z		1	z				N (dub)
			Ļ			Ļ			↓ ↓		+				P	s *	* 1		F	ron	nt *	2		Mie	d *	2		Ba	k *	1
ROD with 4				ļ					ļļ.		ļļ.																			
Mezzanines		1	: .5N	1	1	5N		1	5N		9N+1	7N	-			+	+		_	-	+		_	+	+			$\left \right $	_	┝

Murrough Landon, QMUL

ROD Outputs to LO/L1Calo?

• EM layer


- Probably four 10 Gb/s SNAP12 bundles per ROD
 - One per mezzanine (less if higher speed links which is likely)
 - Same for all eta, but RODs & links somewhat underused at high eta?
- Hadronic layer (HEC and Tile)
 - Depends on density of channels per ROD
 - HEC/FCAL RODs likely to be (half?) as dense as EM RODs
 - For present Tile ROD, ~half a SNAP12 bundle per ROD?


Inputs to LO/L1Calo

- One 0.4*0.2 area in eta*phi might have:
 - 8 EM fibres covering one 0.1*0.1 tower each
 - 1 Hadronic fibre covering eight 0.1*0.1 towers
 - Perhaps additional 1 EM fibre with low granularity sums
 - Useful if Jet/Energy algorithms are in a separate FPGA
 - NB such low granularity sums are the main constraint on organisation of cells into RODs (both for LAr and Tile)
 - And maybe additional fibre(s) per 0.4*0.2 area with extra information used only by L1 trigger (not for L0)
 - Above still assuming 10 Gbit/s links
- Regroup to one SNAP12 with EM+Had fibres
- Optically duplicate each bundle at the same time
 - Intercrate fanout
 - Electrical fanout within crates (no de/reserialisation)

LOCalo Phase 2 Architecture? (1)

- Single processor module (0.8*0.8)
 - For all objects: EM, tau, jet
 - Perhaps four big FPGAs per board?
 - If so, could have one FPGA per 0.8*0.2
 - If we have one fibre per 0.1*0.1 tower:
 - 11*5 EM fibres plus 4*3 hadronic fibres
 - Separate FPGA (one per module) for jets?
 Unless future FPGA handles lots more inputs?
 - Total of 88 0.1*0.1 fibres plus 2*28 0.4*0.2 sum fibres per module
 - Around 12 SNAP12 fibre bundles
 - About 1.5 Tbit/s total bandwidth per module
- Or could imagine separate JEM
 - One per octant crate covering all eta
 - Same module, different firmware?

LOCalo Phase 2 Architecture? (2)

- Phi octant layout
 - Intercrate fanout from RODs, eta fanout via backplane
 - Output to global topological merger
 - ROD/ROS in same crates?

L1Calo ATCA crate? (One octant, all eta)

			<u>4000</u>						Barre	I RO	D		lcap			
	-											R	DD			
				dddd d			3333	di d		<i>HHH</i>				Endcap		
						nine			<u> anna</u>		<u> Allel</u>		<i>iiiii</i> i	Special		
		11111	fibre	for	et tr	igger	?)	<i>ililili</i>		<i>iiiii</i>	Ì		.	ROD		
			iiiiii		<i>tititi</i>		iiiiii		<i>iiiii</i> i		<i>ann</i>		<i>tittiti</i>			
		<u>iiiii</u>		iiiiii		11111		iiiiii		<u>iiiii</u>		<u>iiiii</u>				
		2000	<i>iiiiii</i> i				Tile	ROD					111111		FCAL	
		111111		1111		11111		iiiiii		<u>iiiii</u>	<u></u>	<u>iiiii</u>			ROD	
		10000	iiiiiii		<i>iiiiii</i> i		<u>iiiiii</u>		<i>tittiti</i>		<i>tiiiii</i>		<i>iiiiii</i>			
		11111		<u>iiiii</u>				<i>iiiiii</i>	inna.	iiiiii	inner	<u>iiiii</u>	inna in the second			
mmmm		EC	anna a		<u>Kaaa</u> a	lunu	iiiiii	innin	(iiiiii)	mm	(aaa)	, uun	<u>Kiittii</u>			
	R	OD	inn	<u>inn</u>	hum	<u>Kaaaa</u>	mm	<u>anna</u>	inna.	ann	inna)	aaa	luna			
		100000	1111111		Kana	inner	<u>uuu</u>	mm	<u> ((((((</u>	inni.	Kaaa	11111	1000			
				100	1000	10000	mm	ann	innin	0100	innin (11111	hum			
		mm	0000		10000		uun		111111		10000		10000			
		11111	huun		11111	10000	mm	111111		11111		11111	hum			
	unununu	mm			1	11111	uun	mm	111111	mm	10000					
		111111	hum	111111		10000	<u></u>		11111		1000	11111	hum			
<u>ununu</u>	<u>ventantanta</u>				10000			ann	<u></u>	ann	1000			inninnin.	<u>anana</u>	
		777777					aaa				1000	777777				
********	<u>tananan</u> a	mm			<u></u>	0000		mm		<i></i>						
******			, 				<u>11111</u>		0000		<u>)</u>		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			1010101		A MILLIN		in and and a		10000		VIIIII		VALUA I		manun	
LOC		LOCalo		LOCalo		LOCalo		LOCalo		LOCalo		LOCalo		LOCalo		
Octant Module?		Octant Module?		Octant		Octant		Octant Module?		Octant			ant	Octant Module?		
MOG	uler	moa	HIGL	moa	uler	moa	ulef	Mod	uler	PIOG	dies	MOC	ule?	MOC	uler	
						LO	Calo	Crat	e?							
				111111		11111		11111			1					
		2000	iiiii)	2000	dill'			1000	iiiiii	0000	dilili	2000	dill'	H N N H		

Murrough Landon, QMUL

TileCal Upgrade Meeting

- Trying to get a rough LO/L1Calo design
 - Are our current thoughts reasonable?
- L1Calo/LAr/Tile working group started discussions
 - Organisation of RODs and links, bandwidth, etc
 - How to match up LAr/Tile, barrel/endcap layouts in manageable way
 - Is denser Tile ROD or half eta slice possible? (If required?)
 - Granularity of LO/L1 sums and content of data
 - Any other preprocessing we would like
 - Implication of new ideas for L1Calo stage
 - Extra data from ROD following LOA (full granularity and/or RoI based)
- Prototyping and technology demonstrators under way
 - Mainly aimed at phase 1
- Important to get input from simulation!