

Phase2: Calo FE and L1Calo

Murrough Landon 18 November 2010

- Phase 2 Overview: LO and L1
- LAr and Tile plans
- Possible LOCalo system
 - Links, algorithms, architecture
- (No simulation)

- Present L1A split into LOA and L1A
 - To allow LO RoI seeded L1 track trigger
 - LOA: synchronous, low latency (3 μ s), rate up to 500 kHz
 - L1A: asynchronous within fixed longer latency ($\geq 9.6 \mu s$?)
- Calorimeters: move pipelines off detector
 - Digitise every cell every BC and send to ROD
- Calo RODs preprocess "minitowers" for new "L1Calo"
 - New "L1Calo" comprises L0 and L1 trigger processors
- LO and L1 topological processors
 - Including muon and (at L1) track triggers
- NB terminology is unsettled
 - L0 ≈ "pretrigger", word "L1Calo" is overloaded etc

Overview of Phase 2

Murrough Landon, QMUL

TDAQ @ SLAC

LAr Upgrade Plans (1)

Front End

- No change to cabling from calorimeter to FE crates
- New Front End Board (FEB)
 - Digitise every channel every BC and send to ROD
 - Requires rad hard ADC and fast serial links
 - Baseline: one 10 Gb/s SNAP12 per FEB (128 channels)
 - Organised as two sets of 64 channels on five fibres with one redundant fibre
- Active R&D programme
 - COTS ADCs tested: none OK (power, price, rad hard)
 - Custom ADC being developed: early version promising
 - Custom serial link being developed
 - Single channel version tested (incl radiation hardness)
 - Six channel version being designed

TDAQ @ SLAC

LAr Upgrade Plans (2)

- ROD
 - Baseline: ROD per half FE crate (14 FEBs)
 - 14 SNAP12s, input bandwidth 1.4 Tb/s
 - Expect about 400 Gb/s output to LOCalo
 - Full system needs O(100) such RODs
 - R&D programme:
 - Prototype ATCA test module produced
 - ATCA mezzanine being assembled
 - ROD evaluator board being designed
 - ROD firmware: tested optimal filter & BCID for one channel
 - Estimate of latency
- Other
 - Power supplies, etc

Tile Upgrade Plans (1)

- Front End
 - No changes to the detector
 - Except drawer mechanics
 - New drawer electronics
 - Digitise every channel every BC
 - Expect to use commercial ADC and CERN GBT links
 - Baseline: one 5 Gb/s SNAP12 per drawer (up to 48 channels)
 - Fully redundant readout, every PMT independently transmitted twice
 - R&D work
 - New FE components under test
 - New ASIC for "3 in 1" function
 - PMT block

Tile Upgrade Plans (2)

• ROD

- Baseline: one ROD per eta slice (EBC-LBC-LBA-EBA) * 0.1 phi
 - NB 0.2 phi and half eta preferred by L1Calo
 - Expect about 40 Gb/s output to LOCalo
- Needs 64 such RODs
- Tested GBT links
- No latency estimate yet
- Other
 - Drawer mechanics
 - Power supplies

- Calorimeter ROD functions for LOCalo:
 - Derive calibrated Et from digitised pulses (no saturation)
 - Assign Et to correct bunch crossing
 - Provide quality flags from optimal filter (pile up, etc)
 - Form sums of calorimeters cells into "mini towers"
 - Definition of mini towers (or "LO primitives") to be defined
 - EM layer: both fine and coarse sums (for EM & Jet triggers)
 - Possibly run algorithms on cells within one ROD FPGA
 - Eg $\pi 0$ rejection using LAr EM strips
 - Transmit mini towers to LOCalo
 - Organisation of towers in RODs to be optimised for LOCalo
 - Aim to handle boundary areas and keep flexibility for mini tower formation
 - Pipeline full data (for every cell) for use by L1 stage (& DAQ)

Phase 2 L1Calo Components

- LOCalo:
 - Find EM, Tau, Jet objects (and Et sums) every BC
 - Large multi module system
- LOTopo:
 - Topological processor: merge LOCalo & LOMuon results
- L1Calo:
 - Asynchronous refinement of LOCalo using full calo data
 - May be driven by LO RoI (but not necessarily so)
- L1Topo:
 - Final topological processor for L1Calo, L1Muon & L1Track
- LO & L1 CTP:
 - Interface with topological processors to be defined

LOCalo Component: Brainstorming

• Discussed existing ideas, also with our engineers

11

TDAQ @ SLAC

- Baseline: 10 Gb/s links => 200 bits per bunch crossing
- Hadronic layer (and coarse EM sums for jet trigger):
 - One 10 Gb/s fibre link per 0.4*0.2 (or 0.2*0.4) in eta*phi
 - Can have finer eta*phi and depth granularity than now for jets
- EM layer fine granularity for EM/Tau algorithms:
 - One 10 Gb/s fibre link per 0.1*0.1 tower
 - 200 bits: more detail on eta, phi and depth
 - Concentrate bandwidth on middle layer?
 - Heavily sum strips layer
 - Finer Et resolution and dynamic range
 - Quality bits: pileup flag, strips layer structure bits?

- Sliding windows, now with finer granularity
 - Limitations will be fanout and number of inputs per FPGA
 - Expect O(50) 10 Gb/s links into Virtex 7
- Adopt L2 EM/Tau ideas
 - L2 "R core": ratio of 3*7 to 7*7 LAr middle layer cells
 - LOCalo bandwidth might require middle layer cells summed in pairs
 - Need simulation studies on best use of the bandwidth
- Would like larger jet environment...
 - Present 0.8*0.8 eta*phi jets use 0.4*0.4 RoI maximum
 - Better to know if 0.8*0.8 area is a maximum within its environment
 - Problem: much larger fanout and more fibres per FPGA
 - May have to choose one of: better granularity or larger environment
 - Needs some simulation work...

Possible LOCalo Implementation

- "Strawman" module
 - Covers 0.4*1.6 eta*phi
 - Both EM/Tau and Jet
 - Resolve overlaps locally
 - Fully custom backplane
 - Fanout to adjacent slots
 - Passive optical fanout for adjacent crates in phi
 - Four full ATCA crates
 - May need >14 slots to handle high eta & FCAL
 - XXL width racks?
 - Or reuse EM/Tau FPGAs in outer modules for FCAL?

- Need to understand fanout between modules & number of inputs to each FPGA
 - In progress...
 - Not fully worked out yet
 - Examples of EM and Jet
 FPGAs (0.8*0.8 jets)
 - Coloured areas: one module
 - "Direct" fibres to this module from RODs
 - Environment fanned out from neighbours

- LAr and Tile progressing well with phase 2 R&D
- LOCalo "straw man" design emerging...
 - Technically feasible (probably)
 - Needs more work on the details
 - Need to define algorithms
 - Estimate latency of LOCalo+LOTopo
- L*EverythingElse: still sketchy or missing
 - LOTopo: use phase 1 topo processor as LOTopo prototype
 - L1Calo/L1Topo: not yet thought about them
- Health warning:
 - Little simulation work to justify these technical ideas