

L1Calo Upgrade Phase 2

Murrough Landon 11 January 2010

- Introduction and timescales
- Granularity and algorithms
- RODs, links and mappings
- L1Calo design?
- Summary

Introduction

- LHC phase 2 luminosity upgrade expected ~2020?
 - Aiming to reach about 10^35, but no increase in energy
- Trigger requirements
 - Still interested in the same objects (W,Z,etc)
 - Hope to keep thresholds as close to 10^34 menu as possible
 - But the interaction rate and pileup is much higher
 - So we will need a significantly more discriminating trigger
 - Over 99% of "phase O" L1Calo electron triggers are jets
 - Use much finer granularity information from the calorimeters
- Towards phase 2
 - LAr and Tile are already doing design and prototyping work for new front end electronics and new RODs
 - L1Calo needs at least to start design and simulation studies

Timescales

- Earliest date for phase 2 is (currently) about 2020
 - Install and commission new trigger in 2019?
 - Production and testing in 2018?
 - Final prototypes and preproduction in 2017?
 - Final(?) design and technology choices in 2016?
- We need to have a very good idea of what we want to do in about five years from now
 - Which needs plenty of simulation studies
 - Experience and testing of links, FPGAs, ATCA crates, etc
 - (ATCA = Advanced Telecomms Computing Architecture)
 - The GOLD module from Uli could be a good test bed
 - Design discussions with calorimeter communities
 - Small working group has just started...

Likely Phase2 Trigger

- Fast LevelO Calo and Muon RoIs
 - For L1 track trigger(s)
- Slower Level1
 topological trigger
 - Using a combination of calo, muon, inner tracker (and MDTs?)
 - May also have L1Calo refinement of original L0Calo trigger?

Calo Front End, ROD and LOCalo Links

- Digitise all cells every BC and transmit to RODs in USA15
- Preprocess for L1Calo
 - Et (or energy?) per BC
 - Maybe also precise timing?
 - Fine granularity sums
 - Location within mini towers?
 - Coordinate of EM strip max?
 - Quality flags
 - Pile up detected
 - Fine structure in EM strips?
 - Eg for $\pi 0$ rejection

NB bandwidths are **very** approximate!

Possible Additional L1Calo Stage?

- Suggestion to use the L1 stage also for refining the LOCalo decision
 - Only useful for EM layer?
- Adds complexity to the calorimeter RODs as well as the L1Calo trigger
- Need a good idea of how it would be used
 - Simulation study?!

Granularity

Present L1Calo

- Mainly based on 0.1*0.1 towers in both EM and hadronic
- This is the hadronic layer detector granularity
- But EM layer has much finer granularity unused so far

L1Calo Phase 2

- Not much change in hadronic layer?
 - Would more depth samplings be useful?
 - Might anyway be worth separating Tile D cells (0.2*0.1 geometry)
- Expect big (tenfold?) increase in EM data to phase 2 L1Calo
 - Need to study what is the most useful information to send
 - Plenty of opportunities for people to work on simulation!

EM Barrel Geometry

- Each layer has a different geometry
 - Uniform in eta, except for barrel/endcap transition region

Granularity of the trigger towers for the EMB

EM Endcap Geometries

- Seven different layouts between eta=1.4 and eta=3.2
- Many different ways cells are grouped in front end boards
- Also other layouts in the hadronic layer and FCAL

Granularity of the trigger towers for the EMEC

L1Calo Joint Meeting

Algorithms

- Basic sliding window with finer granularity
- Try to import good algorithms from present L2
- Best EM selection is based on shower shape:
 - Look at ratio of 3*7 vs 7*7 middle layer cells
 - Simulation question: how does this degrade with granularity
 - Suppose we had sums of 2 middle cells (matching back layer cell)
 - Would have to look at 4*7 vs 8*7 cells
- Next best (for π0 rejection):
 - Look for fine structure (double peaks) in strip layer
 - This really needs the full granularity to be useful
 - Probably too much data to ship to LOCalo (could go to L1Calo?)
 - Good candidate for more sophisticated ROD preprocessing?
 - Simulation/algorithm/firmware question: what would be the best way to process and transmit this information?

Links to LO/L1Calo (1)

- EM layer:
 - Suggest one 10 Gb/s fibre per 0.1*0.1 tower (all layers)
 - Allows about 200 bits of payload data per BC (would like more!)
 - Example allocation of bits (all depth samplings separate)
 - Keep phi granularity (middle/back), sum to 0.05 in eta
 - Eight 10 bit (Et+quality?) back layer values [80]
 - Eight 10 bit middle layer sums plus max cell bit [88]
 - Two 10 bit strip layer sums plus 8 coordinate/quality bits [36]
 - Two 10 bit PS layer sums plus 1 coordinate bit [22]
 - Total 226 bits (and we would like some spare bits too)
 - Maybe additional 1 fibre with low granularity (0.1*0.1) sums
 - Useful if jet/energy trigger is in a separate FPGA or module
 - Additional fibres per 0.4*0.2 with extra info for L1 stage?
 - Full strip layer information for $\pi 0$ rejection and track matching?
 - Precise timing for z vertex and/or slow heavy exotic particles?

Links to LO/L1Calo (2)

- Hadronic layer:
 - Suggest one 10 Gb/s fibre per eight 0.1*0.1 towers
 - Allows about 25 bits per tower
 - Good to (slightly) underuse the bandwidth
 - Need to cope with extra cells in overlap regions
 - Eg crack and gap scintillators
 - Tile and HEC cells in 1.4 to 1.6 region
 - Might have up to ten towers per link in places

More compact in low granularity endcaps/FCAL?

LAr and Tile RODs

- LAr
 - Latest aim is for one ROD to cover one half FE crate
 - Or same number (1800) of cells with different eta*phi shape
 - ROD would contains four TCA mezzanines (with 1 FPGA?)
 - L1Calo (my!) preference
 - One EM ROD mezzanine covers a "domino" of 0.4*0.2 (eta*phi)
 - Larger area in the low granularity EM endcap region, HEC and FCAL
 - Aim to keep the shape the same across the eta phi space
 - Easier for fanout but harder in standard EM Endcap region
- Tile
 - Current Tile proposal: ROD covers 3.0*0.1 in eta*phi
 - Much less dense than LAr ROD: could be more ambitious!?
 - L1Calo (my!) preference:
 - ROD covers 0.2 in phi (either split at eta=0 or more dense)
 - Match the EM 0.4*0.2 domino when grouping towers on links

LAr EM Barrel/Overlap Mapping

• Attempt to map links from front end boards (FEBs)

- Tricky regions need duplication/quadruplication of fibres

		EM Barrel Half FE Crate													EN	EM Endcap Special Crate (1.4-1.6)												_										
eta	0	.0			0.	4		•0	.8		1	.2			1	.6		•	1.4	1	1.6	5		1.	4	1	.6		1	.4	1	.6		-	1.4		1.6	
PS * 1																	← N	N									ZN		z			z	:				. (2
	-		N	N			N			N			1	N				_	-		1			p			Z,	-	z			z	-	-	+	_	2 2	
Front * 7		F				4	Ŧ	+	H	Ŧ	+	F					←3	N	-					BN			z		z			z	:	_	+	-	1	1
		4	N	4	N	41	1	4N	41	N	4N	4	N										1				Z,		z			z		_	-	-	· P · N	5
Middle * 4		F					Ŧ	-		+	-	F					←2	N	-			i					z		z			z	:		-		. 2	2
		4N			4N			4N			2N						-	Ì			ក្ត			NZ.	z				z	z –		-	- P N	D N				
Back+BE * 2						-	-		F	-	-						←N							nb) N			z		z			z		_	-		1	2
			2	N			2N	-		2N			2	N										-	••••		ž		z			z	:		-	-	. p) . N	
		4				+		4					Ļ					PS	s *	1	-		Fr	on	t*	2		1	Mid	*	2			Bad	ck '	* 1	_	
ROD with 4 Mezzanines			15	N			150			151		••••	9N-	+7	N																-	-		_		_	_	_

Murrough Landon, QMUL

ROD Outputs to LO/L1Calo?

• EM layer

- Probably four 10 Gb/s SNAP12 bundles per ROD
 - One per mezzanine (less if higher speed links which is likely)
 - Same for all eta, but RODs & links somewhat underused at high eta?
- Hadronic layer (HEC and Tile)
 - Depends on density of channels per ROD
 - LAr HEC/FCAL RODs likely to be as dense as EM RODs
 - For present Tile ROD, probably one SNAP12 bundle per ROD
 - Could have two or four as for EM RODs with higher density RODs

Inputs to LO/L1Calo

- One 0.4*0.2 area in eta*phi might have:
 - 8 EM fibres covering one 0.1*0.1 tower each
 - 1 Hadronic fibre covering eight 0.1*0.1 towers
 - Perhaps additional 1 EM fibre with low granularity sums
 - Useful if Jet/Energy algorithms are in a separate FPGA
 - And maybe additional fibres per 0.4*0.2 area with extra information used only by L1 trigger (not for L0)
- Regroup to one SNAP12 with EM+Had fibres
- Optically duplicate each bundle at the same time
 - Intercrate fanout

LOCalo Phase 2 Architecture? (1)

- Single processor module (0.8*0.8)
 - For all objects: EM, tau, jet
 - Maybe 4 TCA mezzanines like LAr ROD?
 - If so, could have one FPGA per 0.8*0.2
 - If we have one fibre per 0.1*0.1 tower:
 - 11*5 EM fibres plus 4*3 hadronic fibres
 - Separate FPGA (one per module) for jets?
 Unless one 2015 FPGA handles lots more inputs?
 - Total of 88 0.1*0.1 fibres plus 2*28 0.4*0.2 sum fibres per module
 - Around 12 SNAP12 fibre bundles
 - About 1.5 Tbit/s total bandwidth per module
- Or could imagine separate JEM
 - One per octant crate covering all eta
 - Same module, different firmware?

L1Calo Joint Meeting

LOCalo Phase 2 Architecture? (2)

- Phi octant layout
 - Intercrate fanout from RODs, eta fanout via backplane
 - Output to global topological merger
 - ROD/ROS in same crates?

Murrough Landon, QMUL

L1Calo Joint Meeting

Summary

- Trying to get a rough LO/L1Calo design
 - Are our current thoughts reasonable?
- L1Calo/LAr/Tile working group starting discussions
 - Organisation of RODs and links, bandwidth, etc
 - Granularity of LO/L1 sums and content of data
 - Any other preprocessing we would like
- Prototyping and technology demonstrators under way
 - Especially in LAr and Tile
- Important to get input from simulation!