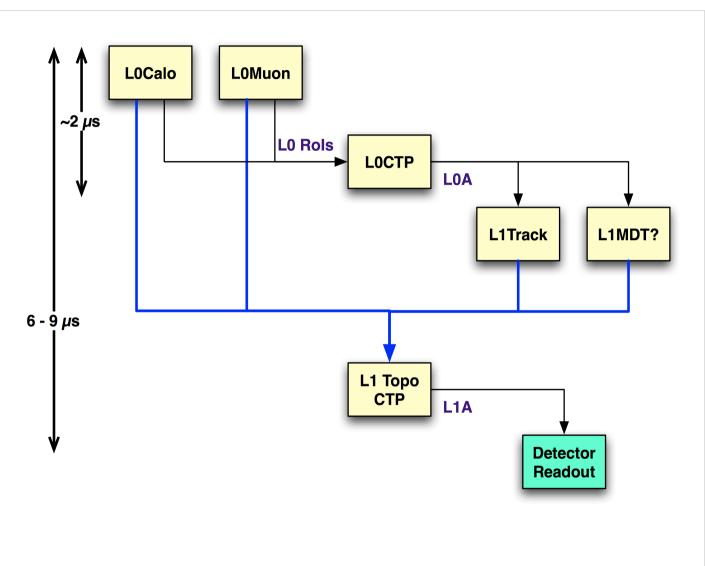


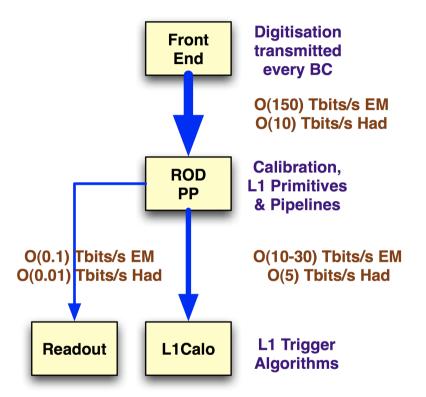
Phase 2 L1Calo/Calo Interface

Murrough Landon 9 December 2009


- Introduction
- Calo RODs
- Granularity and algorithms
- Calo-L1Calo links
- L1Calo design?
- Summary

Introduction

- L1Calo/Calo interface "task force"
 - Proposed at the recent ATLAS upgrade week
 - 1 person per LAr/Tile/L1Calo system
 - Myself, Arno Straessner, Christian Bohm
 - Discuss issues of L1Calo/Calo interface
 - Make some proposals for wider discussion?
 - First phone meeting on Friday morning
- Required from L1Calo
 - Idea of what we want the Calo RODs to provide us
 - Granularity, bandwidths, preprocessing algorithms
 - Constraints and requests on channel and ROD organisation
- Aim of this talk
 - (Re)start us thinking about the above


Reminder: Likely Phase2 Trigger

- Fast LevelO Calo and Muon RoIs needed for L1 track trigger(s)
- Slower Level1
 topological
 trigger from
 combination of
 calo, muon,
 inner tracker
 (and MDTs?)

Reminder: Calo FE, ROD and L1

- Digitise all cells every BC and transmit to RODs in USA15
- Preprocess for L1Calo
 - Et (or energy?) per BC
 - Maybe also precise timing?
 - Fine granularity sums
 - Location within mini towers?
 - Coordinate of EM strip max?
 - Quality flags
 - Pile up detected
 - Fine structure in EM strips?
 - Eg for $\pi 0$ rejection

NB bandwidths are **very** approximate!

LAr ROD (EM)

- Latest aim is for one ROD to cover one half FE crate
 - Or a similar number of cells with different eta*phi shape
 - Barrel half FEC is 0.2*1.5 (1 PS, 8 Front, 4 Middle, 2 Back FEBs)
 - Endcap half std FEC is 0.8*0.4 (1 PS, 6 Front, 4 Middle, 2 Back FEBs)
 - ROD contains four TCA mezzanines, each with one(?) FPGA
- L1Calo (my!) preference
 - One ROD mezzanine covers a "domino" of 0.4*0.2 (eta*phi)
 - "Barrel": ROD covers 1.6*0.2 (eta*phi)
 - In the range 1.4-1.6 this includes some endcap special crate FEBs
 - Would need duplication of a few B/E transition region fibres
 - Endcap Standard: ROD covers 0.8*0.4
 - Endcap Special: ROD covers 0.8*0.8?
 - Might have larger "domino" eg 0.8*0.2
 - More compact info to L1Calo from eta>2.5

Hadronic Layer RODs

- TileCal
 - Current Tile proposal: ROD covers 3.0*0.1 in eta*phi
 - Much less dense than LAr ROD: be more ambitious!?
 - L1Calo (my!) preference:
 - ROD covers 0.2 in phi (either split at eta=0 or more dense)
 - One EM 0.4*0.2 domino

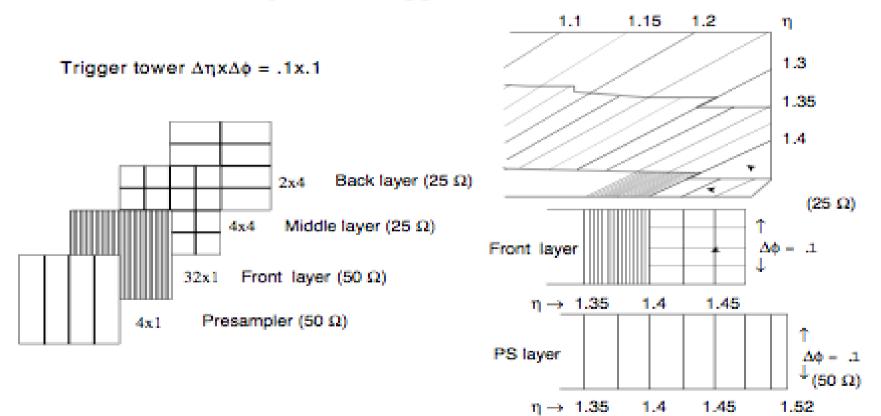
• HEC/FCAL

- Not yet thought about it

L1Calo Ambition Level?

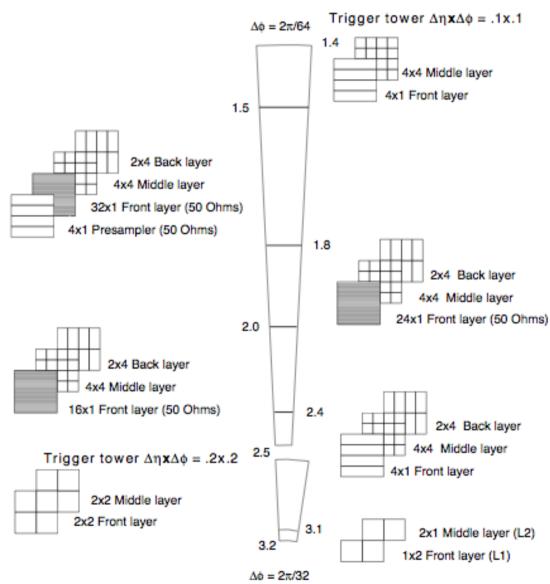
- Phase 2 timescale
 - Not expected before 2020?
 - Few years needed for prototyping, production, installation and commissioning
- What should we aim for?
 - System that (just) comfortably and reliably uses the limits of FPGA and link technology in about 2015?

Granularity


Present L1Calo

- Mainly based on 0.1*0.1 towers in both EM and hadronic
- This is the hadronic layer granularity
- But EM layer has much finer granularity unused so far
- L1Calo Phase 2
 - Not much change in hadronic layer?
 - Would more depth samplings be useful?
 - Might anyway be worth separating Tile D cells (0.2*0.1 geometry)
 - Expect big (tenfold?) increase in EM data to phase 2 L1Calo
 - Roughly same calo: 11 calo bandwidth for both layers
 - Perhaps between 3:1 and 5:1??
 - Same fraction of input/output fibres for all RODs EM and hadronic

EM Barrel Geometry


- Each layer has a different geometry
 - Uniform in eta, except for barrel/endcap transition region

Granularity of the trigger towers for the EMB

EM Endcap Geometries

- Seven different layouts between eta=1.4 and eta=3.2
- Many different ways cells are grouped into FEBs
 - Always(?) by layer
- NB two granularities in the EM barrel
- One in the FCAL
- (Plus similar in the hadronic layer)

Granularity of the trigger towers for the EMEC

Murrough Landon, QMUL

L1Calo Upgrade Meeting

Algorithms

- Basic sliding window with finer granularity
- Try to import good algorithms from present L2
- Best EM selection:
 - Look at ratio of 3*7 vs 7*7 middle layer cells
 - Simulation question: how does this degrade with granularity
 - Suppose we had sums of 2 middle cells + 1 matching back layer cell
 - Would have to look at 4*7 vs 8*7 cells
- Next best (for π0 rejection):
 - Look for fine structure (double peaks) in strip layer
 - This really needs the full granularity to be useful
 - Probably too much data to ship to L1Calo
 - Good candidate for more sophisticated ROD preprocessing?
 - Simulation/algorithm/firmware question: what would be the best way to process and transmit this information?

Link Bandwidths and FPGAs

- Links
 - CERN GBT link
 - 84 bits of payload data @ 40 MHz
 - Standard 6.4Gbit/s (linespeed) link
 - 128 bits of data @ 40 MHz
 - Future(?) 10Gbit/s link
 - Presumably around 200 bits @ 40 MHz?
- FPGAs
 - Latest FPGAs can handle 40 6.4Gbit/s links
 - Increased from 36 links in last years model
 - Might we have ~70 10Gbit/s links per FPGA in 2015?

Links to LO/L1Calo (1)

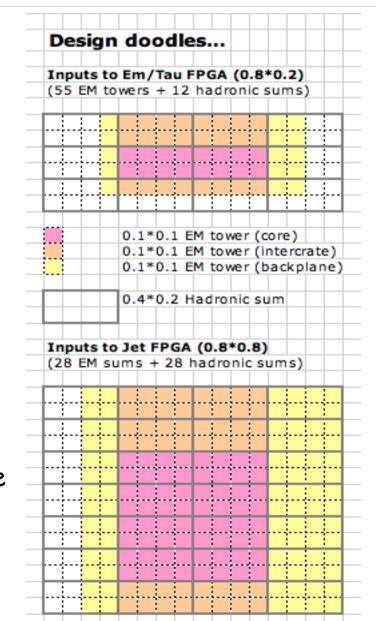
- EM layer:
 - Suggest one fibre per one (or two?) 0.1*0.1 towers
 - Economy model: around 60-100 bits per tower
 - Deluxe model: up to 200 bits per tower?
 - Contents to be decided later (and adjusted whenever)
 - Essential that all depth samplings arrive at the same ROD FPGA
 - Example:
 - Eight 8bit sums of 2 middle + 1 back layer (0.05*0.0125)
 - Two 8bit sums of PS + front layer (0.05*0.1)
 - For each sum, 1 bit pileup flag, 1 (or few) bits coordinate of max cells within the sum, n bits precise timing within 1 BC
 - Total around 100 bits
 - Maybe additional 1 fibre with low granularity (0.1*0.1) sums
 - Additional fibres per 0.4*0.2 with extra info for L1Topo??
 - Eg bitmap of strip layer hits for track matching?
 - Precise timing for z vertex and/or slow heavy exotic particles?

Links to LO/L1Calo (2)

- Hadronic layer:
 - Suggest one fibre per eight 0.1*0.1 towers
 - Allows 10-20 bits per tower depending on link speed
 - Good to (slightly) underuse the bandwidth
 - Need to cope with extra cells in overlap regions
 - Eg crack and gap scintillators
 - Tile and HEC cells in 1.4 to 1.6 region
 - Might have up to ten towers per link in places

• More compact in low granularity endcaps/FCAL?

ROD Outputs to LO/L1Calo?

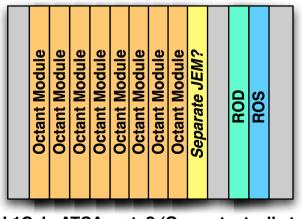

- EM layer
 - Probably four (or maybe two) SNAP12 bundles per ROD
 - One per mezzanine (or per two mezzanines)
 - Same for all eta, but RODs & links somewhat underused at high eta?
- Hadronic layer (HEC and Tile)
 - Depends on density of channels per ROD
 - For present Tile ROD, probably one SNAP12 bundle per ROD
 - Could have two or four as for EM RODs with higher density RODs

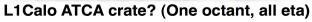
Inputs to LO/L1Calo

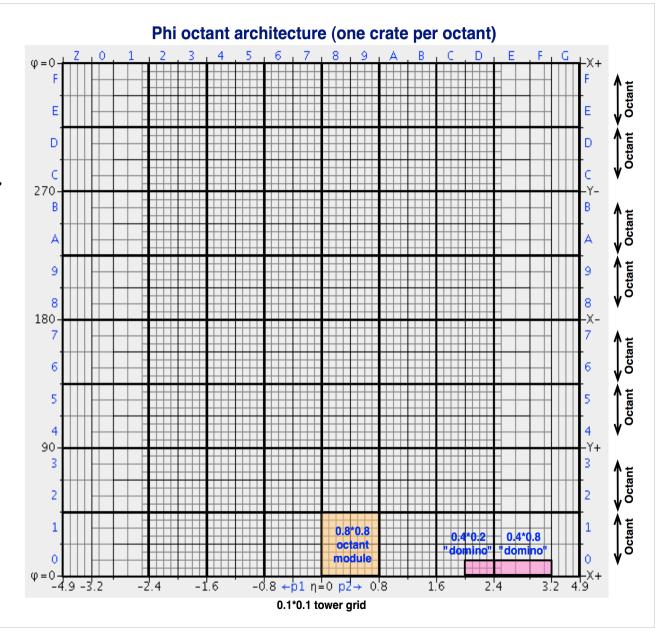
- One 0.4*0.2 area in eta*phi might have:
 - 8 (or 4) EM fibres covering one (or two) 0.1*0.1 tower each
 - 1 Hadronic fibre covering eight 0.1*0.1 towers
 - Perhaps additional 1 EM fibre with low granularity sums
 - Useful if Jet/Energy algorithms are in a separate FPGA
 - And maybe additional fibres per 0.4*0.2 area with extra information used only by L1 topological trigger (not for L0)
- Regroup to one SNAP12 with EM+Had fibres
- Optically duplicate each bundle at the same time
 - Intercrate fanout

L1Calo Phase 2 Architecture? (1)

- Single processor module (0.8*0.8)
 - For all objects: EM, tau, jet
 - Maybe 4 TCA mezzanines like LAr ROD?
 - If so, could have one FPGA per 0.8*0.2
 - If we have one fibre per 0.1*0.1 tower:
 - 11*5 EM fibres plus 4*3 hadronic fibres
 - Separate FPGA (one per module) for jets?
 Unless one 2015 FPGA handles lots more inputs?
 - Total of 88 0.1*0.1 fibres plus 2*28 0.4*0.2 sum fibres per module
 - Around 12 SNAP12 fibre bundles
 - About 1.5 Tbit/s total bandwidth per module
- Or could imagine separate JEM
 - One per octant crate covering all eta
 - Same module, different firmware?




L1Calo Upgrade Meeting


L1Calo Phase 2 Architecture? (2)

• Phi octant layout

- Intercrate fanout from RODs, eta fanout via backplane
- Output to global
 topological merger
- ROD/ROS in same crates?

Murrough Landon, QMUL

L1Calo Upgrade Meeting

Summary

- Trying to get a rough LO/L1Calo design
 - Are our current thoughts reasonable?
- Suggesting rough bandwidth from RODs
 - Number of links per ROD
 - Organisation of RODs
 - Eg barrel/endcap overlap in LAr
 - Two phi bins in Tile ROD
- Need to propose granularity of LO/L1 sums
 - And any other preprocessing we would like