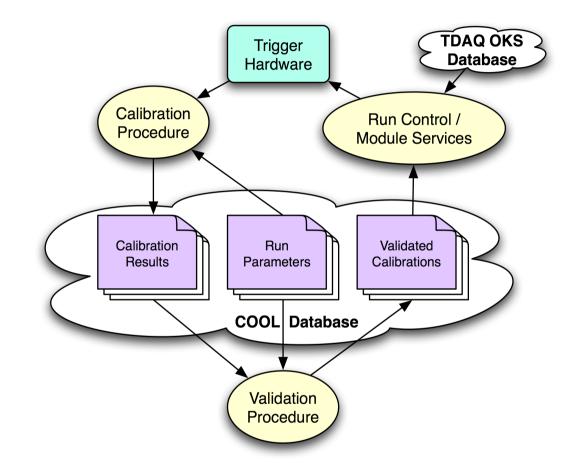


DB Readiness for Calibration?

Murrough Landon 29 June 2009


- Introduction
- L1Calo databases
- Receiver database
- Validation and Tools
- Selecting run types and settings
- Archiving run parameters
- Offline DB requirements
- Conclusions

Introduction

Database reminder:

- TDAQ OKS database to configure the online SW
- COOL database (tables with history) for run parameters, results of all calibrations, sets of validated calibrations and (one day) some of our "conditions" data.

- Existing COOL folders for
 - validated calibrations
 - results of all calibrations
 - lists of dead/noisy channels
 - run parameters
 - global configuration
- Additionally (but not yet used)
 - conditions for each run
 - set of towers disabled via resources
- To be added
 - record of user choices for each run
 - ie what kind of (L1Calo) calibration

L1Calo Calibration DB (2)

• To be changed?

- Separate pedestal measurement from noise cut
 - Measure pedestals with receiver gain zero
 - Measure noise with nominal receiver gains
 - Different runs => different results folders
- Still missing
 - Separate noise cuts for cosmics vs physics?
 - Trigger tower timing for cosmics
- Untested
 - Pulse shape, energy scans, saturated BCID settings
 - Not sure if we have the right folder schemas for these

• Database update procedures

- DAC and pedestal runs can be analysed online
 - Though typically done offline with online SW
 - Can easily be updated to online databases
- PHOS4 and energy scans analysed offline (CAF)
 - Need to transfer new results back to online DB
 - Both to L1Calo COOL database and DB for receivers
 - Not yet tried this

L1Calo Calibration DB (4)

Database location

- Currently still using private SQLite file
 - Still unsure about some folder schemas
 - Eg some calibration results, some run parameters
- Non trivial to change schema once production COOL DB has replicated them to all tier1s
- To do
 - Move to production Oracle server
 - Tested move to "integration" server (INTR)
 - 1.5 hours to copy 1.2 million COOL folder rows
 - About 60 PPr calibrations
 - Still need to test performance from point 1 (if possible)
 - With some SW work we could split up the current DB
 - Configuration and validated calibrations to Oracle
 - Unvalidated results and run parameters (?) left in SQLite

- Database folder(s)
 - Currently a single COOL folder with DAC setting per channel
 - Proposed to split into several folders (not yet done?)
 - Et conversion (Tile only!) [constant]
 - Electronics calibration factor from pulser runs
 - Physics object calibration factor [constant?]
 - Correction factor for dead layers, missing cells
 - DAC setting derived from (selective) multiple of these
- Database location
 - Currently a private COOL database on chaouki@devdb10
 - Should be moved to production Oracle DB
- Database updates
 - Still need to develop mechanism for updating with new results
 - and the algorithms for deriving them

- Validation
 - Still missing sophisticated validation procedures
 - Validation basically manual check of histograms
 - Though we have nice tools to produce these
 - Started work on comparison with previous calibrations
 - Database is only updated for whole system at once
 - Option to update by calorimeter partition (for PPr calibrations)
- Other
 - Noise adjustment via rate metering

Specifying Runs (1)

- Different mechanisms evolved in each system
- L1Calo
 - Different run types described by parameters in sets of COOL folders (one folder per run type)
 - A few additional parameters set only in IS
 - Mainly choices of which COOL folder and which group of OKS objects
- LAr/Tile
 - IGUI panels to update OKS database and publish to IS
 - Settings stored in files or scripts
 - LArShifter IGUI panel to control LAr standalone runs

- For combined L1Calo + LAr/Tile runs
 - Separate partitions for LAr, Tile and L1Calo master modes
 - Should be no need to change OKS configurations
 - Except enabling/disabling LAr/Tile in L1Calo master mode
 - Currently need to use L1Calo and separate Calo panels
 - OK for shifters (if we provide documentation)?

- Receivers
 - Segment currently under the LAr segment
 - And normally disabled => gains not set at Configure step
 - Not available for L1Calo+Tile standalone runs
 - Better to move, eg into TDAQ segment, along with L1Calo
 - Still running LAr software
 - We need to be able to (easily) specify the required gain
 - Flat gain (0 or 1) or pure Et for L1Calo calibrations
 - Physics gains for normal running
 - Existing possibility via detailed LAr global parameters in IGUI
 - Would this still work if receivers were not in the LAr segment?
 - And its not that simple (eg separate for A and C side)

Storing Information about Calibrations

- LAr/Tile:
 - Sequence definition stored with each event
- L1Calo:
 - Sequence number saved in the event
 - Still need to store which type of run...
 - Details to conditions DB
 - Also, ROD header could store sequence type (number 0-15)

- Access to the L1Calo DB!
 - Current calibration, dead towers, etc
 - Tools exist in Athena
 - Updates required for recent online schema changes
 - Can read SQLite DB but really needs Oracle
- Readily digestible information from LAr/Tile
 - Eg dead cells for energy corrections

- Still have work to do
 - Move L1Calo & Receiver DBs to production Oracle server
 - Validating calibrations and analysing trends
 - Useful service tasks?
 - Saving conditions