
L1Calo: OKS Cable Schema

● Background
● Implementation
● Suggestions 

Murrough Landon
16 October 2006



Murrough Landon, QMUL 2 TDAQ DB

L1Calo Digital Connectivity

● There is a complex network of cables connecting 
parts of the L1Calo trigger
– Preprocessor to cluster & jet/energy processors
– Between merger modules in those two processors & to CTP
– From processor modules to RODs (Glink)
– RODs to ROS (Slink)
– ROD busy network

● An early requirement during the development phase 
(2002) was to be able to simulate arbitrary subsets
– Load playback data anywhere, predict output downstream

● Needed complete description of cabling
– Preferably easy to edit for frequently changing setups



Murrough Landon, QMUL 3 TDAQ DB

Database Considerations

● Technology: OKS
– We needed this several years ago at test rigs
– Chose to extend the OKS configuration DB

● May want to make another DB the master in future?
● Organisation: separate OKS files

– Can have file of hardware layout (crates, modules)
– More than one possible file of cabling layouts
– Selection of which layout at partition/segments level

● Though in fact I dont think we ever used this possibility
● Design choices

– Schema as simple as possible, minimise number of objects
– Use OKS features to minimise risk of DB editing errors



Murrough Landon, QMUL 4 TDAQ DB

Actual L1Calo OKS Schema

● One object per cable
– Or per bundle of cables

● Relates to two modules
● Module connectors are 

named Cable attributes
– Strings in base class
– Enums in subclass for 

each cable type to help 
prevent editing errors

● Cable is not HW_Object
– Was created earlier
– Separate enable flag



Murrough Landon, QMUL 5 TDAQ DB

Software Aspects (1)

● Custom SW layer on top of DAL
– Hand written module class with links to DAL objects

● Also links to calibration & trigger menu data for the module
– Reverse relationships: modules want to know which 

cables are connected to them, not vice versa
– Create multiple connections from one CableBundle
– Extra sanity checks on top of schema restrictions

● Check SlinkCable not connected to Busy module etc
● NB schema only enforces appropriate connector names

– HW & Simulation classes for each type of module 
know about the connector names for that module



Murrough Landon, QMUL 6 TDAQ DB

Software Aspects (2)

● Disabling connections
– Connection is only active if both modules are enabled 

and the cable object itself is enabled
– Hardware & simulation mask off disabled inputs

● Experience
– Very useful to have uniform scheme for all cables
– But currently breaks down at L1Calo boundaries

● disabling a ROD doesnt disable the connected InputChannel 
at the ROS :-(



Murrough Landon, QMUL 7 TDAQ DB

Suggestions for Wider Use

● Keep it simple!
– No connector objects

● Cable is HW_Object
● Relationship to Module?

– Or some other class?
● Use connector numbers?

– As used in Rack Wizard :-(
– Would like to keep strings (at least for connector types, 

some modules have many connectors of different types)
● Generic scheme

– Extendable to all types of cable, not specific to Busy 
network and Slinks (otherwise we have to keep our own)



Murrough Landon, QMUL 8 TDAQ DB

Summary & Discussion

● L1Calo has (slightly specific) schema & SW for cables
● Propose more generic schema for wider use

– Cables and Modules (or other objects) they connect to are 
hardware objects (with possible TC references)

– Objects describing SW can have links to HW objects
● Want to generate OKS DB from other DBs, eg TC

– But need simple, easily hand editable scheme for test rigs
● May like to have cable subclasses for checking

– But it gets complex if module relationships are too specific
● Same cable type can connect different modules, eg Busy input from 

ROD or another Busy module
● Ensure schema is extendable to subdetector cables

– And allows customisation with specific “knowledge”


