
Software Organisation 1 Murrough Landon

Software Organisation

Murr ough Landon – 6 September 2001

http://www.hep.ph.qmw.ac.u k/˜l andon/t alks

Overview
� Organising Packages

� Directory Structures

� CMT

� Questions

L1Calo Software Meeting 6 September 2001 RAL/HD



Software Organisation 2 Murrough Landon

Organising Many Packages

Assumptions
� Our software is organised in a number of separate pack-

ages.

� These are stored in one or more CVS repositories.

Requirements
� Should be able to check out and build an individual pack-

age – without having to check out and build the packages
it depends on.

� Should be able to use header files and libraries from other
packages in a simple consistent way.

� Should be able to make a “release” of a consistent set of
packages for simple installation elsewhere.

ATLAS Appr oach
� Each package has its own separate directory structure in

CVS for source code and control files (eg Makefiles etc).

� Each package is built and installed into a common area –
this includes binary programs, libraries and header files.

� If you are working on a package, your checked out ver-
sion should take precedence over the installed distribu-
tion.

� ATLAS has used tools (formerly SRT, in future CMT) to
organise and formalise this process.

� To make this all work, some choices of organisation of
the code and directory structure are required.

L1Calo Software Meeting 6 September 2001 RAL/HD



Software Organisation 3 Murrough Landon

Director y Structure (1)

Directories within the package
� Top level directory with the package name, eg modserv

(with CMT an extra version subdirectory is added)

� All source kept with src subdirectory (and its subdirecto-
ries)

� With CMT, control files kept in cmt subdirectory

� Can have other subdirectories (eg for data, docs, etc)

� Header files (which form part of the external interface to
the package) kept in package subdirectory
(NB this seems to be the ATLAS convention, not src/ package
as I had in SW note 8).

� Purely internal header files could still be kept in src sub-
directories along with class file if desired.

� And some scheme for linking external header files from
src subdirectories into package could probably be de-
vised...

L1Calo Software Meeting 6 September 2001 RAL/HD



Software Organisation 4 Murrough Landon

Director y Structure (2)

Building and installing a package
� Separate directory tree for installed components of a pack-

age.

� Single lib and bin subdirectories for all packages, but sep-
arate for machine/compiler selection.

� Separate directory per package for header files.

Accessing other packages
� For header files #include " package/ header.h"

� NB this style is also require within a package for any
header file forming part of the external interface.

� Single installed lib directory makes it easy to link with
all required libraries.

L1Calo Software Meeting 6 September 2001 RAL/HD



Software Organisation 5 Murrough Landon

Director y Structure (3)

Example
Two checked out packages in your working directory, one tra-
ditional, one with CMT:

˜/someworkdir/l1calo/mod serv /
˜/someworkdir/l1calo/mod serv /Do xyfi le
˜/someworkdir/l1calo/mod serv /Makefi le
˜/someworkdir/l1calo/mod serv /modser v/
˜/someworkdir/l1calo/mod serv /sr c/
˜/someworkdir/l1calo/mod serv /sr c/cp mcla sses /
˜/someworkdir/l1calo/mod serv /sr c/ot herc lass es/

˜/someworkdir/l1calo/con fdb/ v00 1
˜/someworkdir/l1calo/con fdb/ v00 1/cm t/
˜/someworkdir/l1calo/con fdb/ v00 1/co nfdb /
˜/someworkdir/l1calo/con fdb/ v00 1/sr c/
˜/someworkdir/l1calo/con fdb/ v00 1/sr c/ca libc las ses/
˜/someworkdir/l1calo/con fdb/ v00 1/sr c/me nucl ass es/

Where these get built and installed locally:

˜/installdir/i386_linux/ bin/
˜/installdir/i386_linux/ lib/
˜/installdir/include/con fdb/
˜/installdir/include/mod serv /

Where the default distribution of all packages is installed on
your system:

/someroot/dist/pro -> release0.3
/someroot/dist/release0. 3/i3 86_ linu x/bi n/
/someroot/dist/release0. 3/i3 86_ linu x/li b/
/someroot/dist/release0. 3/in clu de/c onfd b/
/someroot/dist/release0. 3/in clu de/m odse rv/
/someroot/dist/release0. 3/in clu de/o ther pack age /

L1Calo Software Meeting 6 September 2001 RAL/HD



Software Organisation 6 Murrough Landon

CMT

Overview
� Becoming an ATLAS standard (slowly)
� CMT is single C++ program which uses a requirements

file in the src/cmt directory of each package to build and
run a Makefile.

� The Makefile is constructed from a number of fragments
supplied with the CMT package.

� CMT interworks with CVS (but doesnt require it).

Features
� The requirements file can specify the desired outputs:

binary applications, libraries or other documents.
� You can set global options for the package and for each

output.
� Packages can "use" other packages. In this way they

also inherit all their options (but can override them). Global
options for all packages can be set this way.

� All packages get version numbers. You can build a distri-
bution by use ing the latest versions of all packages (eg
in a separate build package) and doing cmt broadcast
make.

Comments
� CMT has a preferred directory structure which is not the

ATLAS one, but it can be customised to be so.
� Currently missing equivalent to make install

� Support for generation of code (eg by moc) would need
to be added as a new document or language type.

� Feedback from ATLAS evaluations seems (weakly?) favourable.

L1Calo Software Meeting 6 September 2001 RAL/HD



Software Organisation 7 Murrough Landon

Questions

Tools
� Should we try to use standard ATLAS tools (ie CMT) from

the start? Or stick to Makefiles?

� Use of other tools, eg code checking, memory leaks, etc

� Documentation: use Doxygen (or other similar product)
for source code documentation and eg Together for mak-
ing diagrams?

Coding, naming, etc
� How strictly should we follow ATLAS coding and naming

rules?

� Convention/style for our package names? Prefix every-
thing with l1calo or L1Calo to avoid any possible clashes
with other packages in Atlas?

� Possible problem with two level (eg l1calo/ package) struc-
ture in CVS when using CMT?

Namespaces
� Newer compilers will require std:: prefix for STL. Use

of using namespace std; is discouraged.

� Use namespaces for our software? Eg single l1calo
namespace? At least for new packages?

L1Calo Software Meeting 6 September 2001 RAL/HD



Software Organisation 8 Murrough Landon

My Suggestions

Directories and Installation
� Adopt directory structure compatible with future use of

CMT, ie all source in src subdirectory, include files avail-
able in package

� Convert small or new packages.
� Leave HDMC until we are sure we (and the rest of ATLAS)

are happy with CMT.
� But add make install to HDMC now.

CMT
� Works for single simple package (l1calo/rc ).
� Try it on a more complicated one involving code genera-

tion and also one with Java (eg for IGUI panels).
� If OK, start using it seriously for coherently building all

(new) packages.

Documentation
� Include a doxygen control file (Doxyfile ) with each pack-

age.
� This will at least extract classes, methods etc
� Encourage addition of suitable comments too!

Namespaces and Naming
� Use l1calo namespace for all new packages.
� Aesthetic or potential practical problems with any scheme.

To avoid any future clashes with Online software (and
Offline and other detector online software) prefix all our
packages and use 2–8 character suffixes, eg L1CaloModServ.
PS I dont really like this...

L1Calo Software Meeting 6 September 2001 RAL/HD


