
ModuleServices 1 MurroughLandon

Module Services

Murr ough Landon – 6 September 2001

http://www.hep.ph.qmw.ac.u k/˜l andon/t alks

Overview
� General Aims

� Overall Schema

� Details

� Questions

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 2 MurroughLandon

Module Services: Aims

General Idea
� Will be the main way other software accesses the mod-

ules

� Provide a high level set of services for each of our mod-
ules and their main, complex, subcomponents

� Hide details of internal register and memory structure

� Maybe modules permit some access to major subcompo-
nents?

Interfaces
� Based on HDMC Module and SubModule classes

� Modules will need to be given a Bus and ideally some
connection to the PartManager (to be determined)

� Close connection between configuration database objects
and Module Services configuration methods

� Run control states handled by run control package (call-
ing module services to execute transition actions)

� Modules return status objects for hardware monitoring
package

� Will test programs need more detailed access to module
components?

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 3 MurroughLandon

Overall Schema

Expected Classes
� May be useful to have single superclass for our modules?

Ie other than HDMC Module class.

� Classes for our production modules (TCM, PPM, PPROD,
CPM, JEM, CMM, CPROD)

� Also classes for test modules and external service mod-
ules (DSS, TTCvi, BUSY)

� Classes for major subcomponents - typically FPGAs, ASICs,
etc

Module Services vs HDMC Hardware Parts
� Keep basic Parts in HDMC Hardware Access Library

� Use Module Services package for components which use
objects from other packages (eg database)

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 4 MurroughLandon

HardwareModule

HardwareCpm
HardwarePpm

HardwareJem

hdmc::Module

HardwareCmm

HardwareTtcvi
HardwareTcm

CpChip

Serialiser

InputFpga

JetFpga

CpmDaqRoc

CpmRoiRoc

JemDaqRoc

JemRoiRoc

CmmDaqRoc

CmmRoiRoc

HardwareDss
HardwareCpRod

HardwarePpRod

CrateMerger

SystemMerger

AnIn

RemFpga

PprAsic

Schema for Module Services Package
The schema shows all the module classes we expect,

but the major subcomponents of each module may
not be complete or correct.

The methods and attributes of each class are shown
on separate diagrams.

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 5 MurroughLandon

Details: Typical Services (1)

Caveat
� I have mostly been thinking of configuring modules...

� ...so probably many gaps related to actually using the
modules.

Creation
� Constructors: taking HDMC Bus and database parame-

ters.

� Some thought required on convenient database object to
describe each modules address.

Configuration
� Several methods to load calibration data.

� Typically aim for one method per type of calibration (eg
timing, energy) per type of subcomponent (eg TTCrx, Se-
rialiser, CpChip).

� Method(s) to load test vectors – depending on how clever
we are in describing test vectors.

� Method(s) to capture configuration from hardware to database?

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 6 MurroughLandon

Details: Typical Services (2)

Status/Readout
� Method(s) to collect status information, eg link and parity

errors, rates histograms etc. Should return objects.

� Method(s) to read back loaded test vectors.

� Collect event from spy buffer(s).

� What about other internal data??

Operation Modes
� Modules may have several operation or test modes, even

with standard FPGA load. Need methods to set and query
these modal states. Eg setting BCMUX modes on all
channels at each end of the links. (NB Im not thinking
of run control states here).

� Method to reset (at least control registers) to known state.

Miscellaneous
� Software L1Accept and software versions of TTC broad-

cast commands (though some of these will be setting op-
eration modes).

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 7 MurroughLandon

Details: FPGA loading

HardwareModule base class
� Most of our modules (though not external modules) have

FPGAs.

� Is it worth making FPGA loading a common base class
function?

� Requires access to FPGA Parts of subclasses...

� ...and would be unused for several of our modules.

FpgaSpec
� Devise database description of how an FPGA should be

loaded.

� Need path to a file and version number/string reported by
a register in the loaded FPGA to check. Descriptive name
for each FPGA type (eg Serialiser) also useful.

� Database could have a collection of all the FPGA pro-
grams relevant to a given type of module.

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 8 MurroughLandon

HardwareModule

+HardwareModule(bus:Bus*,db:Dbmodule*)
+loadFpgaCode(db:FpgaConfig*): void
+getFpgaVersions(): FpgaConfig*

FpgaConfig
-pathPrefix: string

FpgaSpec
-name: string
-filename: string
-version: int

HardwareModule Class

Most of our modules contain FPGAs,
so a method to reload FPGA code into

on board flash memories is useful.
The method is passed an object structure

obtained from the database which specifies
the pathname of each FPGA program.

Can use the same object structure to
return currently loaded FPGA versions

(though some members would be unused).

Q: if loadFpgaCode() is a superclass method
then subclass FPGA parts must be accessible

to the superclass...
...so each subclass needs to override some

virtual superclass methods allow access
to its FPGA parts

Maybe it would be easier to just implement
loadFpgaCode() separately in each subclass?

HDMC has some support for loading FPGAs. Probably needs
extending to cover different types of FPGA and different
ways they can be loaded in the different types of module

(ie how registers are accessed to do it).

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 9 MurroughLandon

Details: Various Modules

CPM and JEM
� Not sure if readout controllers are complex enough (from

outside view) to require separate subcomponents. But
probably sensible.

� Most configuration methods are fairly straightforward de-
composition of calibration and trigger menu objects to the
relevant subcomponents.

RODs
� They have TTCrx chips – but arent sensitive to delay set-

tings?

� Little to configure? Apart from source ID?

CMM
� Subclass of SystemMerger specific for Et and Jet (with

method to load thresholds which arent needed for CP
variant).

PPM sug gestions
� Diagrams even more sketchy than the others...

� Mapping of calibration data to subcomponents may not
be optimal.

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 10 MurroughLandon

HardwareCpm

+HardwareCpm(bus:Bus*,db:DbModule*)
+HardwareCpm(bus:Bus*,add:AddressD16,subtype:string)
+setPhiEta(phiBin:int,etaBin:int): void
+loadThresholds(thresh:L1ClusterThreshold*): int
+loadInputTiming(db:SerialiserSettings*): int
+loadBackplaneTiming(db:CpChipSettings*): int
+loadTtcrxSettings(db:ttcrxSettings*): int
+loadTestVectors(vec:TestVectorSpec*): int
+getErrorCounts(): CpmErrorCounts*
+setBcmuxMode(mode:enum {Std,ChA,ChB}): int

HardwareCpm Class

Creation: need some HDMC info (bus, partmgr?), also address etc.
Q: how to cope with module subtypes (eg different FPGA loads).

Should we have different class variants which provide different
services, or handle all in one class, accepting that some

methods will be meaningless some of the time?

Initialisation: several methods passing objects typically read
from databases (or created manually in test programs).

Also provide methods to return loaded data...
Present suggestions for thresholds imply that a CPM knows its
phi,eta location. Maybe included in complex DbModule object?

Loading test vectors: pass "intelligent" object which specifies
what to load where? Or do we need a bit more detail?

Status: method(s) to return summary of errors (eg link errs,
parity errs, etc). Return single object which can be asked

detailed or global questions (eg still no errors?)

Readout: dump internal data? Maybe for alternate CpChip
debug program. Can we freeze and read other memories?

DbModule
-vmeAddress: AddressD16
-ttcAddress: int
-crate: int
-slot: int
-phiBin: int
-etaBin: int

Many DbModule attributes are derivable
from each other. Should probably define
some unique address and provide methods

to return the rest.

Probably want separate DbModule subclasses
for each (or most) of our module classes

to provide specific parameters (eg ROD ID,
module subtypes?)

NB this example DbModule should be subclass
of Online ConfdbModule (probably with more

specific name).

Serialiser

+loadInputTiming(db:SerialiserSettings*): int
+loadTestVectors(vec:TestVectorSpec*): int
+setBcmuxMode(mode:enum {Std,ChA,ChB}): int

CpChip

+loadThresholds(thresh:L1ClusterThreshValue*): int
+loadBackplaneTiming(db:CpChipSettings*)
+loadTestVectors(vec:TestVectorSpec*): int

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 11 MurroughLandon

HardwareJem Class

HardwareJem

+HardwareJem(bus:Bus*,db:DbModule*)
+HardwareJem(bus:Bus*,add:AddressD16,subtype:string)
+setPhiEta(phiBin:int,etaBin:int): void
+loadThresholds(thresh:L1JetThreshold*): int
+loadThresholds(thresh:L1EtThresholds): int
+loadInputTiming(db:InputSettings*): int
+loadTtcrxSettings(db:ttcrxSettings*): int
+loadTestVectors(vec:TestVectorSpec*): int
+getErrorCounts(): JemErrorCounts*

Rather similar to CPM obviously...
NB present TriggerMenu suggestions put all global Et

thresholds in top level TriggerMenu class.
This is not so convenient for passing to each JEM

so its may be better to change the TriggerMenu
although that may not be so nice elsewhere?

InputFpga

+loadInputTiming(db:InputSettings*): int
+loadTestVectors(vec:TestVectorSpec*): int

JetFpga

+loadThresholds(db:L1JetThreshold*): int
+loadTestVectors(vec:TestVectorSpec*): int

BetterDbModule
-crate: int
-slot: int
+BetterDbModule(crate:int,slot:int)
+crate(): int
+slot(): int
+vmeAddress(): unsigned int
+redVmeAddress(): unsigned int
+ttcAddress(): unsigned int
+phiBin(): int
+etaBin(): int
+layer(): enum {Ecal,Hcal,Sum}

May like separate subclass
per module type for

different address allocation
algorithms?

Possibly TCM has different
algorithms depending on

which type of crate its in
(adapter link card)

though maybe methods to give
VME address in standard crates

and also reduced VME crates
may be sufficient?

There may anyway be subclasses of DbModule for many types of module
so we can include any extra parameters specific to that module.

For example CMM, ROD firmware variants, DSS daughtercard config, etc

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 12 MurroughLandon

HardwarePpm Class

HardwarePpm

+HardwarePpm(bus:Bus*,db:DbModule*)
+HardwarePpm(bus:Bus*,add:AddressD16,subtype:string)
+setPhiEta(phiBin:int,etaBin:int,layer:enum {E,H}): void
+loadLookupTables(db:vector<LutSettings>*): int
+loadBcidSettings(db:vector<BcidSettings>*): int
+loadFadcSettings(db:vector<FadcSettings>*): int
+loadTtcrxSettings(db:ttcrxSettings*): int
+loadTestVectors(vec:TestVectorSpec*): int
+getRatesHistos(): vector<RatesHisto>
+setBcmuxMode(mode:enum {Std,ChA,ChB}): int

PprAsic

+loadLookupTables(db:vector<LutSettings>*): int
+loadBcidSettings(db:vector<BcidSettings>*): int
+loadTestVectors(vec:TestVectorSpec*): int
+getRatesHistos(): vector<RatesHisto>

RemAsic

Again some similarities with other modules...
Collections of calibration data may usefully be more

sophisticated than simple vectors (eg in cases
where many channels have the same calibration).
Im not sure where the FadcSettings need to go.

If both PprAsic and AnIn card need some parameters
of the proposed FadcSettings structure, maybe

it should be split?
Anyway the proposed PPM calibration data structures

are doubtless missing many parameters.

AnIn

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 13 MurroughLandon

HardwareCmm Class

HardwareCmm

+HardwareCmm(bus:Bus*,db:DbModule*)
+HardwareCmm(bus:Bus*,add:AddressD16,subtype:string)
+setPhiEta(phiBin:int,etaBin:int): void
+loadThresholds(thresh:L1EtThreshold*): int
+loadCableTiming(db:CableDelays*): int
+loadTtcrxSettings(db:ttcrxSettings*): int
+loadTestVectors(vec:TestVectorSpec*): int
+getErrorCounts(): CmmErrorCounts*

CrateMerger

+loadTestVectors(vec:TestVectorSpec*): int

SystemMerger

+loadThresholds(thresh:L1EtThreshold*): int
+loadTestVectors(vec:TestVectorSpec*): int

NB trigger thresholds are only required in the SumEt
and Jet variants of the CMM.

Doubtless many other operations and configuration
information (eg suppressed channel masks etc).

TestVectorSpec

Want to give a single test vector specification to a module
(possibly/probably subclasses of some TestVectorSpec class

to cope with different types of component to be loaded?)

Also may like to have a specification for the test vectors
to be loaded into a set of modules under test.

Want a simple way for module to dispatch relevant parts of
the test vector spec/collection to its subcomponents.

Various ways to provide test vectors: single file/stream,
multiple files/streams, generation on the fly according

to some seed parameters or description, random data,
 and arbitrary mixtures of these (channel by channel?)

At the point of use, the test vector provides a simple
byte stream (or stream of records N bytes wide).

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 14 MurroughLandon

Questions

How much should modules kno w?
� Should modules know about run state (and variations de-

pending on different run types)?

� Should modules (and CpChips?) know their phi,eta ad-
dress? (Implied by present suggestions for completely
general eta and phi dependent trigger thresholds)

� Should they use some global mapping service?

� My answers:no,yes,not sure

Parts, PartManager, etc
� Should modules hard code creation of their subcompo-

nents in their constructors or read them from parts files?

� How do we cope with modules which have variable sub-
components eg different pluggable daughtercards?

� How do we cope with modules which have very different
FPGA loads (eg debug version of CpChip code). Sepa-
rate classes with different sets of methods or single more
complicated class?

� My feelings: probablya bit of mix andmatchdependingon
eachmodule.Somevariationscanbespecifiedin thedatabase,
othersmaybebetterwith separateclasses.

Granularity
� Do we need access or detailed control of individual sub-

components of modules? (Eg change BCmux mode on a
subset of channels). Or are global modes enough?

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 15 MurroughLandon

Database Objects

Quic k Summar y
� Draft document (SW note 005)

http://www.hep. ph. qmw. ac .u k/l 1c al o/ doc/p df /C onfi gData base .p df

has suggestions for trigger menu and for calibration data.
The diagrams are included here for convenience.

� Version of trigger menu schema is already in use offline
but may be changed.

� Calibration data certainly needs more work.

� Nothing yet on extending the existing hardware and soft-
ware database schema (from the Online group) to de-
scribe the configuration of our modules.

� Also nothing on run parameters.

� General idea for both trigger menu and calibration data
is to create a tree of objects. The top level object can
be asked to find any lower level object or collection of
objects, eg the calibration data for a single CPM.

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 16 MurroughLandon

TriggerConfiguration

L1TriggerMenu
-m_sumEtThresholds: vector<int>
-m_missEtThresholds: vector<int>
-m_jetSumEtThresholds: vector<int>
+clusterThresholds(): vector<L1ClusterThreshold*>
+jetThresholds(): vector<L1JetThreshold*>
+fwdJetThresholds(): vector<L1FwdJetThreshold*>
+sumEtThresholds(): vector<int>
+missEtThresholds(): vector<int>
+jetSumEtThresholds(): vector<int>
+jetElementThreshold(phi:int,eta:int): int
+sumElementThreshold(phi:int,eta:int): int

L1ClusterThreshold
-m_algorithm: enum {EM,Tau}
-m_multiplicity: int
+algorithm(): enum {EM,Tau}
+multiplicity(): int
+cluster(phi:int,eta:int): int
+emIsol(phi:int,eta:int): int
+hadIsol(phi:int,eta:int): int
+hadVeto(phi:int,eta:int): int

L1ClusterThreshValue
-m_clusterThresh: int
-m_emIsolThresh: int
-m_hadIsolThresh: int
-m_hadVetoThresh: int
-m_phiMin: int
-m_phiMax: int
-m_etaMin: int
-m_etaMax: int
+cluster(): int
+emIsol(): int
+hadIsol(): int
+hadVeto(): int
+valid(phi:int,eta:int): bool

L1JetThreshold
-m_window: enum {W4,W6,W8}
-m_multiplicity: int
+window(): enum {W4,W6,W8}
+multiplicity(): int
+threshold(phi:int,eta:int): int

L1FwdJetThreshold
-m_multiplicity: int
-m_threshold: int
+multiplicity(): int
+threshold(): int

L1ThreshValue
-m_threshold: int
-m_phiMin: int
-m_phiMax: int
-m_etaMin: int
-m_etaMax: int
+threshold(): int
+valid(phi:int,eta:int): bool

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 17 MurroughLandon

C
alibC

onfiguration

C
pm

Settings
-readoutP

tr: int

TTC
rxSettings

-clkD
es1D

elay: int
-clkD

es2D
elay: int

-coarseD
elay: int

-controlB
its: int

SerialiserSettings
-phase: vector<int>
-delay: vector<int>

C
pC

hipSettings
-phase: vector<int>

20..20
8..8

Jem
Settings

-readoutP
tr: int

InputSettings
-phase: vector<int>
-delay: vector<int>

11..11

Ppm
Settings

-readoutP
tr: int

C
m

m
Settings

-readoutP
tr: int

-delay: vector<int>

D
ataFile

T
op level objects in

a single O
K

S
 file. O

ther
objects in separate files.

L1CaloSoftwareMeeting 6 September2001 RAL/HD



ModuleServices 18 MurroughLandon

Ppm
Settings

-readoutPtr: int

BcidSettings
-firM

ultipliers: vector<int>
-edgeThresholds: vector<int>
-saturationThreshold: int
-analogueBcidD

ac: int

FadcSettings
-pedestalD

ac: int
-strobeD

elay: int
-coarseD

elay: int

LutValues
-data: vector<int>

LutSettings
-offset: int
-slope: int

0..1

64..64

64..64
64..64

TTCrxSettings
-clkD

es1D
elay: int

-clkD
es2D

elay: int
-coarseD

elay: int
-controlBits: int

Settings from
 different calibrations

stored in separate O
KS files

L1CaloSoftwareMeeting 6 September2001 RAL/HD


