
HDMC Evolution (1)

Murrough Landon – 20 March 2000

We have, for some time, had a wishlist of our desired improve-
ments to HDMC. Some of these have now been addressed.
For others, we have agreed potential solutions.

Handling of Bus Errors
This is essential to allow scanning of VME space, checking
that an expected configuration is correct, and for robustness
against errors interactively entering VME addresses.

This has now been implemented, using the same scheme as
in the UK diagnostics. Bus errors are transported across the
network VME connection and generate C++ exceptions.

Remove STL/Qt from VME BusServer
Previously the HDMC BusServer, which provides VME access
via the network to remote systems, used the same STL and Qt
libraries as the rest of the code. Unfortunately these are not
supported on our old MVME167 systems running LynxOS.

This dependence has now been removed. (But has yet to be
tested in the UK?). In the meantime, we made progress using
Linux on these old processors instead of LynxOS.

���������
	�	������� ����������������� � � !#"$�



HDMC Evolution (2)

Overview GUI for Modules
Users of the UK diagnostics are familiar with the large pan-
els showing groups of a Modules Registers and Memories.
HDMC displays each Register in a separate window, so you
can end up with lots of little windows.

Cornelius has agreed to look into implementing a collective
GUI to gather a Modules Parts (registers, memories, etc) into
a single display. He will report on the feasibility of this at
Mainz.

C++ Access to Register Bitfields
In the GUI, you have easy access to all the bits and bit fields
of a Register. For the DAQ and for test programs, we would
like similar easy access to bit fields from C++.

The layout of each register is defined in a configuration file.
This could be parsed to create C++ code which implements
the kinds of functions we require.

A detailed scheme needs to be worked out and agreed at
Mainz.

C++ Access to Module Registers
Similarly, the GUI shows the list of Registers belonging to a
Module. In HDMC this is a dynamic list: the Module class
doesnt “know” its own Registers.

For the DAQ, it would be convenient if Module subclasses
“knew” the list of their own Registers. This should not be diffi-
cult to implement.

���������
	�	������� ����������������� � � !#"$�



HDMC Evolution (3)

Verifying Registers etc
Testing of Registers etc in HDMC is currently entirely visual.

It would be useful if all Parts had a recursive Verify() method
which could be defined to run an acceptance check on the
Part.

This should be fairly simple to add.

Scripting
For more extensive tests, it would be useful to have a scripting
capability. A rudimentary facility has been implemented, but
use of a standard scripting language (Perl, Python) would be
much better.

This is non trivial.

Use of DAQ -1 Configuration Database
HDMC reads its configuration from a structured text file. The
DAQ will use an OO database to store the hardware config-
uration. It would be useful if HDMC could also use the same
configuration data. This would still need to be supplemented
by other detailed configuration files.

However, our configuration database still needs to be defined...
(though some work has started).

���������
	�	������� ����������������� � � !#"$�


