
Programming Model Rules (1)

Murrough Landon – 17 Sep 1999

We have evolved (from experience!) a set of rules and con-
ventions which the programming models of all modules pro-
duced by our engineers should adhere to. Most of pretty obvi-
ous.

The aim is to aid the software control of the module - espe-
cially software development.

No “write only” registers
� This includes memories, FIFOs, etc.

� The idea is that all information about the state of the mod-
ule must be readable by computer. This may not always
be appropriate for highly volatile data, but in many cases
the decision whether to trust the data should be left to the
software.

Separation of status/control/reset
� Dont mix read only and read/write bits in single registers.

� Status registers are read only, control and other registers
are read/write.

� Some registers are used for dataless actions, eg resets.
The latter are the only “write only” exceptions to the above
rule.

�������	�
����
���� �������
��������� � �"!$#

Programming Model Rules (2)
Read-only bits

� Attempts to write to read-only bits must leave the existing
values unchanged!

Unimplemented bits
� Actions on unimplemented bits should have a defined be-

haviour: eg ignored on write, zero on read.

Power up status
� On power up, all registers should be set to zero - unless

otherwise stated in the (full and complete!) documenta-
tion.

Volatile information
� Data integrity cannot be guaranteed if the computer tries

to read or write data which the module can also update at
the same time. However the Status and Control registers
should always be accessible to determine the status of
the module.

Address space
� When the address space occupied by the module (includ-

ing unimplemented addresses) is addressed it will always
respond with a handshake to avoid a bus error.

�������	�
����
���� �������
��������� � �"!$#

Programming Model Rules (3)
Module ID Register

� Every module must have a unique ID reported by a (read
only) Module ID register which should be at the same
offset (preferably $0) in every module in the system.

� The value encodes the module type, revision and serial
number of each module. The encoding should be same
for every type of module in the system.

� Normally daughtercards should also have a unique ID.

� This allows the configuration to be verified, module changes
to be tracked automatically. If the Module ID is at offset
$0 it is also easy to scan the VME address space to de-
termine the configuration.

Status Register
� Each module should have one or more Status registers.

Control Register
� Each module will usually have one or more Control regis-

ters.

�������	�
����
���� �������
��������� � �"!$#

Comments on TTCvi

Comments on TTCvi Programming Model
� FIFOs are “write only”. No way to read back even persis-

tent (repetitive) mode data. Preferable if FIFO contents,
read and write pointers were available in read only mem-
ory and registers.

� 24 bit event counter in two D16 registers. Attempt to read
with D32 gives bus error.

Other Comments on TTCvi
� Automatic clock generation if no input LHC clock may be

dangerous (loose connection?). Ditto for orbit signal.

� No way for software to know whether internal or external
clock is being used.

� Default (power up) state should be: no external clock
means no output clock or data. Internal clock should be
explicitly selected.

� Extra control and status bits for this should be provided.

�������	�
����
���� �������
��������� � �"!$#

