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LECTURE PLAN

» Hyperparameter optimisation
» Supervised learning
» Loss functions
» Gradient descent
» Adam optimiser
» Multiple minima
» Davidon-Fletcher-Powell (old algorithm, included for context)
» Over fitting

» Summary

'QMUL Summer School: https://www.gmul.ac.uk/summer-school/
 Practical Machine Learning QMplus Page:  https://gmplus.gmul.ac.uk/course/view.php?id=100056 |
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HYPERPARAMETER OPTIMISATION

» Models have hyperparameters (HPs) that are required to
fix the response function(®).

» The set of HPs forms a hyperspace.

» The purpose of optimisation is to select a pointin
hyperspace that optimises the performance of the model
using some figure of merit (FOM).

» The figure of merit is called the cost or loss function.

» c.f. least squares regression or a x2 or likelihood fit.

(*) Minimisation problems related to likelihood fitting often split the hyper-parameters into parameters of interest
(e.g. physical quantities) and other nuisance parameters that are not deemed to be interesting. Machine learning

. . . T . 4
model parameters are the equivalent of nuisance parameters in the language of likelihood fits. e.g. see the book by A Bevan WO Queen Mary
Edwards, Likelihood (1992), John Hopkins Uni Press. T University of London
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HYPERPARAMETER OPTIMISATION

» Consider a perceptron with N inputs.

» This has N+1 HPs: N weights and a bias:

N
y=171 (szﬂfz +9)
1=1
= f(w" z +6)

» For brevity the bias parameter is called a weight from
the perspective of HP optimisation.

nnnnnnnnnnnnnnnnnn
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HYPERPARAMETER OPTIMISATION

» Consider a neural network with an N dimensional input feature
space, M perceptrons on the input layer and 1 output perceptron.

» This has M(N+1) + (M+1) HPs.
» For an MLP with one hidden layer of K perceptrons:

» This has M(N+1) + K(M+1) + (K+1) HPs.

» For an MLP with two hidden layers of K and L perceptrons,
respectively:

» This has M(N+1) + K(M+1) + L(K+1) +(L+1) HPs.
» and so on.

‘*Qs’ Queen Mary
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HYPERPARAMETER OPTIMISATION

» Neural networks have a lot of HPs. Deep networks, especially CNNs can have
millions of HPs to optimise.

» This requires appropriate computing resource.
» It also requires appropriately efficient methods for HP optimisation.

» What is acceptable for an optimisation of 10 or 100 HPs will not generally
scale well to a problem with 103 - 106 HPs.

» The more HPs to determine the more data is required to obtain a generalisable
solution for the HPs.

» By generalisable we mean that the model defined using a set of HPs will have
reproducible behaviour when presented with unseen data.

» When this is not the case we have an overtrained model - one that has
learned statistical fluctuations in our training set.

A.Bevan \-@Qsl Queen Mary

rsity of London
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SUPERVISED LEARNING

» The type of machine learning we are using is referred to as
supervised learning.

» We present the algorithm with known (labeled) samples of
data, and optimise the HPs in order to minimise the loss
function.

» The loss function is a function of:
» labels (ground truth)
» hyper parameters
» activation functions
» architecture of the network (arrangement of perceptrons)

o

A gevan QW Queen Mary

University of London
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SUPERVISED LEARNING: LOSS FUNCTIONS

» There are a number of different types of loss function that
are commonly used.

» We will use the mean squared error (MSE) loss function
based on the sum over training examples of

ei = (yi — ti)’

» normalised by the number of examples, N.

g; is the loss function contribution for the ith example given

the model or perceptron output y; and the true target label
valuet;. See tf.losses.mean squared error.

Note: MSE/2 is called the L2 loss function; See
tf.nn.1l2 loss.

L
A.Bevan \Q“Q_sl Queen |\/|al’y

University of London


https://www.tensorflow.org/api_docs/python/tf/losses/mean_squared_error
https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss

P

PRACTICAL MACHINE LEARNING: OPTIMISATION 9

SUPERVISED LEARNING: LOSS FUNCTIONS

» Writing and using a custom loss function: just use ops

» Define your loss function (lets implement our own MSE)

N
— — . — . 2
& = N E_l:(y’& t’L)
» Assign the computation of the loss function to some variable

called cost

cost = tf.reduce mean(tf.square(tf.sub(yi,ti)))

—

Subtract y; and t;

—

Square the difference

—

Compute the mean sum

» Run the optimiser of choice with the cost specified as the
argument.

tf.train.AdamOptimizer().minimize(cost)
b
A.Bevan \Q‘Q_sl Queen |\/|al’y

University of London
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SUPERVISED LEARNING: BATCH LEARNING!!

Advantages of Batch Learning
1. Conditions of convergence are well understood.
2. Many acceleration techniques (e.g. conjugate gradient) only op-
erate in batch learning.
3. Theoretical analysis of the weight dynamics and convergence
rates are simpler.

» Data are inherently noisy.

» Can use a sample of training data to estimate the gradient for minimisation
(see later) to minimise the effect of this noise.

» The sample of data is used to obtain a better estimate the gradient
» This is referred to as batch learning.

» Can use mini-batches of data to speed up optimisation, which is
motivated by the observation that for many problems there are clusters of
similar training examples.

o
[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 A.Bevan %Q Queen Mary

University of London


http://yann.lecun.com/exdb/publis/index.html#lecun-98b
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SUPERVISED LEARNING: STOCHASTIC LEARNING!!

Advantages of Stochastic Learning
1. Stochastic learning is usually much faster than batch learning.
2. Stochastic learning also often results in better solutions.
3. Stochastic learning can be used for tracking changes.

» Data are inherently noisy.
» Individual training examples can be used to estimate the gradient.

» Training examples tend to cluster, so processing a batch of training
data, one example at a time results in sampling the ensemble in such
a way to have faster optimisation performance.

» Noise in the data can help the optimisation algorithm avoid getting
locked into global minima.

» Often results in better optimisation performance than batch learning.

[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 a.Bevan ¥Q Queen Mary

University of London



http://yann.lecun.com/exdb/publis/index.html#lecun-98b
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GRADIENT DESCENT

» Newtonian gradient descent
» Adam optimiser

» Other types of optimiser

» Davidon-Flectcher-Powell (DFP)

12
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GRADIENT DESCENT

» Newtonian gradient descent is a simple concept.

» Guess an initial value for the weight parameter: wy.
Y

251

201

15}

L
A.Bevan \ééQ_sl Queeﬂ |\/|al’y

University of London
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GRADIENT DESCENT

» Newtonian gradient descent is a simple concept.

» Estimate the gradient at that point (tangent to the curve)

L
A.Bevan \Q“Q_‘:;I Queeﬂ |\/|al’y

University of London
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GRADIENT DESCENT

» Newtonian gradient descent is a simple concept.

» Compute Aw such that Ay is negative (to move toward
the minimum)

a is the learning rate: a small positive number

dy
Choose Aw = —a—— to ensure Ay is always negative. .
dw A.Bevan \G‘Q_sl Queen |\/|al’y

University of London
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GRADIENT DESCENT

» Newtonian gradient descent is a simple concept.

» Compute a new weight value: w1 = wo+Aw

|
|
Q
N\
SH Y
=/
N
DO

1 | 1 ‘u I‘ 1 w
2w 4w

a is the learning rate: a small positive number
dy . .
Choose Aw = —a—— to ensure Ay is always negative.

o
dw A.Bevan \Q‘Q_sl Queen |\/|al’y

University of London
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GRADIENT DESCENT

» Newtonian gradient descent is a simple concept.

» Repeat until some convergence criteria is satisfied.
Y

251

201

15}

|
|
Q
N\
SH Y
=/
N
DO

||
g
_|_
>
S

Wi4-1

||
&
|
T

Wp, 2 W2 W1 4 Wo
a is the learning rate: a small positive number
dy

Choose Aw = —a—— to ensure Ay is always negative. .
dw A.Bevan \Q‘Q_sl Queen |\/|al’y

University of London
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GRADIENT DESCENT

» We can extend this from a one parameter optimisation to a
2 parameter one, and follow the same principles, now in 2D.

V-5

» The successive points wi.1 can be visualised a bit like a ball
rolling down a concave hill into the region of the minimum.

L
A.Bevan \ééQ_sl Queeﬂ |\/|al’y

University of London
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GRADIENT DESCENT

» In general for an n-dimensional hyperspace of hyper
parameters we can follow the same brute force approach
using:

Ay = AwVy

_ dy : dy : dy :
= —« | - ...
dwu dwg,i dwn,i

o
A gevan QW Queen Mary

University of London
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GRADIENT DESCENT: REFLECTION

4

The examples shown illustrate problems with parabolic
minima.
With selection of an appropriate learning rate, g, to fix the step

size, we can guarantee convergence to a sensible minimum in
some number of steps.

If we translate the distribution to a fixed scale, then all of a
sudden we can predict how many steps it will take to converge
to the minimum from some distance away from it for a given a.

If the problem hyperspace is not parabolic, this becomes more
complicated.

o
A gevan QW Queen Mary

University of London
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GRADIENT DESCENT: REFLECTION

» Based on the underlying nature of the gradient descent optimisation algorithm

family, being derived to optimise a parabolic distribution, ideally we want to try and
standardise the input distributions to a neural network.

» Use a unit Gaussian distribution as a standard target shape.

(=) W =mean

O G=RMS

<

» The transformed data inputs will be scale invariant in the sense that HPs such as

the learning rate will be come general, rather than problem (and therefore scale)
dependent.

» Some input features can be difficult to renormalise to a unit Gaussian.

» If we don't do this the optimisation algorithm will work, but it may take longer to
converge to the minimum, and could be more susceptible to divergent behaviour.

L
A.Bevan \GQ_sl Queeﬂ |\/|al’y

University of London
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GRADIENT DESCENT: ADAM OPTIMISER

» This is a stochastic gradient descent algorithm.
» Consider a model f(0) that is differentiable with respect to the HPs 0 so that:
» the gradient g = Vf{(0:.1) can be computed.
» tisthe training epoch
» myand v; are biased values of the first and second moment
» my-hat and vi-hat are bias corrected estimator of the moments

» Some initial guess for the HP is taken: By, and the HPs for a given epoch
are denoted by 0;

» aisthe step size

» B1and B, are exponential decay rates of moving averages.

. . . . A.Bevan \e,Qs’ Queen Mary
Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015 rsity of London
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GRADIENT DESCENT: ADAM OPTIMISER

» ADAptive Moment estimation based on gradient descent.

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; © g¢. Good default settings for the tested machine learning problems are o = 0.001,
B1 = 0.9, B = 0.999 and ¢ = 10~ 3. All operations on vectors are element-wise. With 3% and 3
we denote 3 and 35 to the power .

Require: «: Stepsize
Require: 1,5 € [0,1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters 6
Require: 6: Initial parameter vector
mo < 0 (Initialize 1% moment vector)
vo < 0 (Initialize 2™ moment vector)
t < 0 (Initialize timestep)
while 0; not converged do
t—t+1
gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my <— B -my—1 + (1 — B1) - g+ (Update biased first moment estimate)
vy < B2 vi—1 + (1 — B2) - g? (Update biased second raw moment estimate)
my < my/(1 — B%) (Compute bias-corrected first moment estimate)
vy < vy /(1 — B%) (Compute bias-corrected second raw moment estimate)
0; < 0,_1 — a-my/(v/0; + €) (Update parameters)
end while
return 6; (Resulting parameters)

o
: . . . A.Bevan WQ Queen Mary
Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015 University of London
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GRADIENT DESCENT: ADAM OPTIMISER

» Benchmarking performance using MNIST and CFAR10 data
indicates that Adam with dropout minimises the loss function
compared with other optimisers tested.

10 MNIST Multilayer Neural Network + dropout CIFAR10 ConvNet
\ : : AdaGrad 102 — AdaGrad
RMSProp — AdaGrad+dropout
SGDNesterov — SGDNesterov
AdaDelta 10! —— SGDNesterov+dropout| |
Adam — Adam
: Adam+dropout
S S
g | g
— WA, /) € 11
< ( V\/\ﬂ\{‘m <10
10'2 L A Y A 7Y | I S S
107
10°
i 1 1 10‘4 ! L | 1 1 1 1 1
0 50 100 150 200 0 5 10 15 20 25 30 35 40 45

iterations over entire dataset iterations over entire dataset

» Faster drop off in cost, and lower overall cost obtained.

o
: . . . A.Bevan WQ Queen Mary
Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015 University of London
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GRADIENT DESCENT:MULTIPLE MINIMA

» Often more complication hyperspace optimisation
problems are encountered, where there are multiple
minima.

The gradient descent
minimisation algorithm is based
on the assumption that there is
a single minimum to be found.

In reality there are often
multiple minima.

Sometimes the minima are
degenerate, or near
degenerate.

How do we know we have
converged on the global

minimum? 0
One of several minima

nnnnnnnnnnnnnnnnnn
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GRADIENT DESCENT:MULTIPLE MINIMA

» Often more complication hyperspace optimisation
problems are encountered, where there are multiple
minima.

The gradient descent
minimisation algorithm is based
on the assumption that there is
a single minimum to be found.

In reality there are often
multiple minima.

Sometimes the minima are
degenerate, or near
degenerate.

How do we know we have
converged on the global
minimum?
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GRADIENT DESCENT: DAVIDON-FLETCHER-POWELL

» This is a variable metric minimisation algorithm (1959, 1963)

IS described Ta) Wlklpedla as: ]‘The DFPformuIa is quite effecﬁve, but it Waé soon
| superseded by the BFGS formula, which is its dual

' (interchanging the roles of y and s).

» This is used in high energy physics via the package MINUIT
(FORTRAN) and Minuit2 (C++) implementations.

» The standard tools that are used for data analysis in HEP
have these implementations available, and while the
algorithm may no longer be optimal, it is still deemed
good enough by many for the optimisation tasks.

» Robust / reliable minimisation.
» Underlying method derived assuming parabolic minima

» Understood and trusted by the HEP community.
https://ntrs.nasa.gov/search.jsp?R=19760017876 *

A.Bevan \c‘, o Queen Mar
https://www.osti.gov/servlets/purl/4222000 B et



https://en.wikipedia.org/wiki/BFGS_method
https://ntrs.nasa.gov/search.jsp?R=19760017876
https://www.osti.gov/servlets/purl/4222000
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GRADIENT DESCENT: DAVIDON-FLETCHER-POWELL

» This is a variable metric minimisation algorithm (1959, 1963) is

described in wikipedia as: ‘The DFP formula is quite effective, but it was soon |

| superseded by the BFGS formula, which is its dual
(mterchanglng the roles of y and s).

» This is used in high energy physics via the package MINUIT
(FORTRAN) and Minuit2 (C++) implementations.

e

\ This is mentloned only because it is the dominant algorlthm used in particle
| physms at this time.

|

| Almost all minimisation problems are solved using this algorithm, where the
| dominant use is for maximum likelihood and x2 fit minimisation problems.

The number of HPs required to solve those problems is small (up to a few

hundred) in comparison with the numbers required for neural networks (esp.
deep learning problems).

If you don’t (intend to) work in this field, you can now forget you heard about
this algorithm.

https://ntrs.nasa.gov/search.jsp?R=1976001 7876 a v WM Queen Mary
https://www.osti.gov/servilets/purl/4222000 ' ==

University of London
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OVER FITTING (OVER TRAINING)

» Overfitting

» Training Validation

» Mitigation methods
» Weight regularisation
» Cross validation

» Dropout

29
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» A model is over fitted if the HPs that have been
determined are tuned to the statistical fluctuations in the

data set.

» Simple illustration of the problem:

. =

osE- 30 training examples

0.8

1
0.7

0.6

0.5

0.4

0.3

0.2

OO

‘The decisio>n b‘oundary selected here
| does a good job of separating the red
| and blue dots.

Boundaries like this can be obtained by
training models on limited data |
‘samples. The accuracies can be
impressive.

But would the performance be as good
with a new, or a larger data sample? .w

L
A.Bevan \GQ_sl Queen |V|al’y

University of London
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OVER FITTING

» A model is over fitted if the HPs that have been
determined are tuned to the statistical fluctuations in the
data set.

» Simple illustration of the problem:

PO - 1

oof- 30 training examples 09E-1000 training ex;a"‘.ﬂb}-e.s.".'_
E E . =y " .|‘|.- ....: -"‘:.a'.\ :- I:.. . W "
0.8— 0.8 "ae = b
s . g
0.7:— 0.7:
0.6;— 0.6;
O.Sf 0.5;
0.4F- 0.4F
0.3 0.3F
0.2;— 0.2;
O.li— 0.1;
0:| 11 1 | O:| L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 1

— _ _ - e = — — E—— E— ===

' Increasing to 1000 training examples we can see the boundary doesn’t do as well.

| This illustrates the kind of problem encountered when we overfit HPs of a model.

lL: = — — E— _————— e —

A.Bevan \ééQ_sl Queeﬂ |\/|al’y

University of London
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OVER FITTING: TRAINING VALIDATION

» One way to avoid tuning to statistical fluctuations in the data is to
impose a training convergence criteria based on a data sample
independent from the training set: a validation sample.

» Use the cost evaluated for the training and validation samples to
check to see if the HPs are over trained.

» If both samples have similar cost then the model response function
is similar on two statistically independent samples.

» If the samples are large enough then one could reasonably assume
that the response function would then be general when applied to
an unseen data sample.

» "large enough” is a model and problem dependent constraint.

L
A.Bevan \c“Q_sl Queeﬂ |\/|al’y

University of London
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OVER FITTING: TRAINING VALIDATION

» Training convergence criteria that could be used:

» Terminate training after Nepochs
» Cost comparison:
» Evaluate the performance on the training and validation sets.

» Compare the two and place some threshold on the difference
ACOSt < Scost

» Terminate the training when the gradient of the cost function with
respect to the weights is below some threshold.

» Terminate the training when the Acost starts to increase for the
validation sample.

A.Bevan \aQsl Queen Mary

rsity of London
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See Ch. 9 of Bishop’s Neural Network for Pattern Recognition
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OVER FITTING: WEIGHT REGULARISATION

Weight regularisation involves adding a penalty term to the loss
function used to optimise the HPs of a network.

This term is based on the sum of the weights w; in the network and
takes the form:
'Y oW

1=Vweights

The rationale is to add an additional cost term to the optimisation
coming from the complexity of the network.

The performance of the network will vary as a function of A.

To optimise a network using weight regularisation it will have to be
trained a number of times in order to identify the value corresponding
to the min(cost) from the set of trained solutions.

L
A.Bevan \Q‘Q_sl Queen |\/|al’y

Loshchilov, Frank Hutter, arXiv:1711.05101 Uriversity of London
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OVER FITTING: WEIGHT REGULARISATION

» For example we can consider extending an MSE cost function

to allow for weight regularisation. The MSE cost is given by:
N

€= % Z(yz’ —t;)°

1=1
» To allow for regularisation we add the sum of weights term:

N

EZNZ(yi—ti)2—|—)\ Z w;

1=1 1=V, wetghts

» This is a simple modification to make to the NN training
process.

See Ch. 9 of Bishop’s Neural Network for Pattern Recognition *
. . A.Bevan \c\‘_ﬂl Queen Mary
Loshchilov, Frank Hutter, arXiv:1711.05101 Uriversity of London
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OVER FITTING: CROSS VALIDATION

» An alternative way of thinking about the problem is to assume that the
response function of the model will have some bias and some variance.

» The bias will be irreducible and mean that the predictions made will
have some systematic effect related to the average output value.

» The variance will depend on the size of the training sample.

» The central limit theorem tells us that:

If one takes N random samples of a

distribution of data that describes N
some variable x, where each M = Z Mo
sample is independent and has a i=1

mean value y; and variance o;2, N
then the sum of the samples will V = Z (7@'2
have a mean value M and variance 1

V where:

Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328. \ .4.’[
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010). A-Bevan YN %ﬁgﬁﬂnmary
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OVER FITTING: CROSS VALIDATION

» An alternative way of thinking about the problem is to assume that the
response function of the model will have some bias and some variance.

» The bias will be irreducible and mean that the predictions made will
have some systematic effect related to the average output value.

» The variance will depend on the size of the training sample.

» The central limit theorem tells us that:

The average of the sample of samples will
(on average) be more representative than
any given training example.

. . u=0.493
: o=0.193

10

Number of samples

An extension of this concept is that if we °
train a model many times on smaller sub- 4

samples, the average will be a more
representative performance than an
individual training.

o

Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328.

B
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010). A-Bevan W Queen Mary

University of London
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OVER FITTING: CROSS VALIDATION

» Application of this concept to machine learning can be
seen via k-fold cross validation and its variants*

Divide the data sample for training and
validation into k equal sub-samples.

validation

From these one can prepare k sets of validation
. .. - validation
samples and residual training samples.

Each set uses all examples; but the training and [ iisaton
validation sub-sets are distinct. I validation [
One can then train the data on each of the k I vatidation

training sets, validating the performance of the
network on the corresponding validation set.

— —————— —— = - = e o R ==

' *Variants include the extremes of leave 1 out CV and Hold out CV as well as leave p-out CV. These involve reserving 1 example, 50% of
a‘ examples and p examples for testing, and the remainder of data for training, respectively.

L _

Geisser, S.-(‘I 975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc.,70:320—38. N
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010). S22 vty of Londan
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OVER FITTING: CROSS VALIDATION

39

» Application of this concept to machine learning can be
seen via k-fold cross validation and its variants*

The ensemble of response function outputs will
vary in analogy with the spread of a Gaussian
distribution.

This results in family of ROC curves; with a
representative performance that is neither the
best or worst ROC.

The example shown is for a Support Vector
Machine, but the principle is the same.

It is counter-intuitive, but the robust response
comes from the average, not the best
performance using the ROC FOM.

o
©

o o o o o o
w » 3 ) N (e

o

(False negative rate) Backgr rejection (1-eff)
N

o

ROC-Curve
- SVM_Best
:_ E SVM_Average
- S S L1
— SVM_Holdout_RBF
: | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
4 0.5 0.6 0.7 0.8 0.9 1
(True positive rate) Signal eff

' *Variants include the extremes of leave 1 out CV and Hold out CV as well as leave p-out CV. These involve reserving 1 example, 50%

|

L

—

' examples and p examples for testing, and the remainder of data for training, respectively.

e

= e —

=

Geisser, S

(1 975). The predictive sample reuse method with applications.iJ.iAmer.rStatist. Assoc.,0:30—328.
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010).
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OVER FITTING: DROPOUT

» A pragmatic way to mitigate overfitting is to compromise the model

randomly in different epochs of the training by removing units from the
network.

)’

' Dropout is used
| during training;

&
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\

when evaluating
predictions with
'the validation or
'unseen data the
full network of Fig.
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(a) Standard Neural Net (b) After applying dropout.
» That way the whole model will be effectively trained on a sub-sample of the
data in the hope that the effect of statistical fluctuations will be limited.

» This does not remove the possibility that a model is overtrained, as with the
previous discussion HP generalisation is promoted by using this method.

Srivastava et al., J. Machine Learning Research 15 (2014) 1929-1958 A.Bevan ‘Q’ Queen Mary

University of London


https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
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OVER FITTING: DROPOUT

» A variety of architectures has been explored with different training samples
(see Ref [1] for details).

30r

' . ' v +—¢ With dropout
2.5‘\ ........................ R T Ml IR TN H WithOUt dropout
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» Dropout can be detrimental for small training samples, however in general
the results show that dropout is beneficial.

» For deep networks or typical training samples O(500) examples or more this
technique is expected to be beneficial.

[11 Srivastava et al., J. Machine Learning Research 15 (2014) 1929-1958 A. Bevan \Q’ Queen Mary

University of London



https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
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OVER FITTING: DROPOUT

» We can implement dropout trivially when training our
networks: if you use dropout, training will require a large
number of epochs.

» Specify some placeholder: keep_prob:

keep prob = tf.placeholder(tf.float32, name = "dropout keep prob")

» Use tf.nn.dropout on the model, and use the model with

the dropout wrapper when computing the cost:
dmodel = tf.nn.dropout(model, keep prob)

» Specify the drop out keep probability when training:

train step.run(feed dict={x: batch img, y: batch 1bl, keep prob: DropOutKeepProb})
A.Bevan \c‘,Qsl Queeﬂ |\/|al’y
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SUMMARY

» Set the context for optimisation for supervised learning.

» Discussed several gradient descent based optimisers, including
Adam;

» Over fitting discussed: the need to validate training to obtain robust
predictive power for a model;

» Weight regularisation;
» Cross validation;
» Dropout.

» The potential benefit of batch sample training to provide faster
convergence has also been discussed.

A.Bevan \-@Qsl Queen Mary

rsity of London
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SUGGESTED READING

» The suggestions made here are for some of the standard text books on the subject. These require a higher level of math than we use
in this course, but may have less emphasis on the practical application of the methods we discuss here as a consequence.

» MacKay: Information theory, inference and learning algorithms
4
» C. Bishop: Neural Networks for Pattern Recognition
4
» C. Bishop: Pattern Recognition and Machine Learning
4
» T.Hastie, R. Tibshirani, J. Friedman, Elements of statistical learning

4

» In addition to the references given in the slides, you may also wish to read up on the topics of batch normalisation (a training
acceleration process) and activation whitening (transforming activation inputs to look like a unit Gaussian and decorating the inputs
to speed up training). For example see:

» loffe and Szegedy, arXiv:1502.03167 and references therein

» LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998
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http://yann.lecun.com/exdb/publis/index.html#lecun-98b

