‘*Qs’ Queen Mary

rsity of London

DR ADRIAN BEVAN

PRACTICAL MACHINE LEARNING

MORE TENSORFLOW - CODING

P

PRACTICAL MACHINE LEARNING: MORE TENSORFLOW 2

LECTURE PLAN

» Introduction
» Model building
» Model optimisation
» Optimisers
» Feeding data
» Regression
» Classification
» Summary

» Suggested Reading

= — o e — = . = — — —

' QMUL Summer School: https://www.gmul.ac.uk/summer-school/
5¢ Practical Machine Learning QMplus Page: https://gmplus.gmul.ac.uk/course/view.php?id=10006 |

= —— —_————————— == m— — —_

&
A. Bevan \&Qsl Queeﬂ |\/|al’y

University of London

https://www.qmul.ac.uk/summer-school/
https://qmplus.qmul.ac.uk/course/view.php?id=10006

PRACTICAL MACHINE LEARNING: MORE TENSORFLOW

The aim of these slides is to bridge the gap between the
use of the tensor flow api and the level of understanding
required to build and train a model.

We've already seen some of the pieces of the problem via
the linear regression example.

At the end of this session you will be prepared for the next
example: Function approximation using neural networks
(see the next deck of slides)

\Q/ Queen Mary

University of London

3
PRACTICAL MACHINE LEARNING: MORE TENSORFLOW 4

INTRODUCTION

» We have seen the use of Python language constructs, plotting and NumPy arrays:
» Python will be used as a framework to build and train models.

» The plotting will be useful to visualise the evolution of the model optimisation
process and the accuracy of models.

» We will convert tensors of our data into NumPy arrays to feed data into our
neural networks.

» TensorFlow ops will be used to build and evaluate our models.

» Mainly matrix multiplications, but other operations will be useful for computing
loss functions (for example).

» Optimisers and other functions will be used to train our models.

L
A.Bevan \c“Q_sl Queeﬂ |\/|al’y

University of London

&,’n
PRACTICAL MACHINE LEARNING: MORE TENSORFLOW 5

M 0 D EL B U I LD I N G » Example FunctionApproximator.py

» This example will take a single valued input and build a model to
approximate the function that translates the input into a single valued
output.

» From this description we can see that we are constrained by the
following:

» 1 input feature
» 1 output

» This is a regression problem (continuous valued output required,
rather than a classification decision).

» The form of the model is not defined, and the data scientist working
on this problem can be creative.

A.Bevan \-@Qsl Queen Mary

rsity of London

&,’n
PRACTICAL MACHINE LEARNING: MORE TENSORFLOW 6

M 0 D EL B U I LD I N G » Example FunctionApproximator.py

» This example will take a single valued input and build a model to
approximate the function that translates the input into a single valued
output.

» From this description we can see that we are constrained by the
following:

» 1 input feature
» 1 output

» This is a regression problem (continuous valued output required,
rather than a classification decision).

» The form of the model is not defined, and the data scientist working
on this problem can be creative.

A.Bevan \-@Qsl Queen Mary

rsity of London

P

PRACTICAL MACHINE LEARNING: MORE TENSORFLOW 7

MODEL BUILDING ’ Example FunctionApproximator.py

» We can now choose the form of our model to fit these
constraints:

» This example implements a single layer perceptron.

Function to approximate is

f=f)=2a’

Function used to approximate
this is

y = vl h, where h = wlz

The optimisation target is to obtain
a good approximation for some
range of x; i.e.

:/y\% Yy fOl“ T € [Qjmina Qjmam]

b
A.Bevan WO Queen Mary

University of London

e

PR

>

CTICAL MACHINE LEARNING: MORE TENSORFLOW

Example FunctionApproximator.py

placeholders are used for the input values and true values
(also called ground truth). These variables have the names
x andy ,respectively.

tf Graph input:
X_: 1s the tensor for the input data (the placeholder entry None is used for that;
and the number of features input (n_input = 1).

the MLP.

#
#
#
#
y_: 1s the tensor for the output value of the function that is being approximated by
#
#
X_ f.placeholder(tf.float32, [None, n_input], name="x_")

y-

f.placeholder(tf.float32, [None, n_classes], name="y_")

\g__ Queen Mary

University of London

f
PR

>

CTICAL MACHINE LEARNING: MORE TENSORFLOW

Example FunctionApproximator.py

The hidden layer takes an input (x) and multiplies that by the
weight tensor (w _layer 1)and adds a bias(bias layer 1).
A relu activation function is used, taking the argument

arg = wlz + b

We construct layer 1 from a weight set, a bias set and the activiation function used

to process the impulse set of features for a given example in order to produce a

predictive output for that example.

#

w_layer_1l: the weights for layer 1. The first index is the input feature (pixel)
and the second index is the node index for the perceptron in the first
layer.

bias_layer_1: the biases for layer 1. There is a single bias for each node in the
layer.
layer_1: the activation functions for layer 1

print("Creating a hidden layer with ", n_hidden_1l, " nodes")

w_layer_1 tf.Variable(tf.random_normal([n_input, n_hidden_1]))
bias_layer_1 = tf.Variable(tf.random_normal([n_hidden_1]))

layer_1 = tf.nn.relu(tf.add(tf.matmul(x_,w_layer_1),bias_layer_1))

&
%O Queen Mary

University of London

PRACTICAL MACHINE LEARNING: MORE TENSORFLOW

Example FunctionApproximator.py

The final step is to compute the model output (y)

Similarly to the hidden layer, take the outputs of the hidden
layer nodes, and combine those with weights (output) and
bias (bias output)to compute §y = output layer.

Similarly we now construct the output of the network, where the output layer
combines the information down into a space of evidences for the possible

classes in the problem (n_classes=1 for this regression problem).
print("Creating the output layer ", n_classes, " output values")

output = tf.Variable(tf.random_normal([n_hidden_1l, n_classes]))

bias_output = tf.Variable(tf.random_normal([n_classes]))

define operation for computing the regression output - this is our model prediction
probabilities = tf.matmul(layer_1l, output) + bias_output

In this case the matrix multiplication itself is used (with a trivial
activation function) to compute the model output.

o

%O Queen Mary
Uni

versity of London

2 3
PRACTICAL MACHINE LEARNING: MORE TENSORFLOW 11

MODEL OPTIMISATION: OPTIMISERS * example_runctionapproximator.py

» Optimisation (as we will see later) requires a few parameters to be defined:
learning_rate = 0.01
training_epochs = 100
» learning rate: Thisis a parameter that tunes the step size taken in the
optimisation process.

» Small values of the learning rate will allow the optimisation algorithm to
converge on a good approximation to the optimal solution - but this may take a
long time.

» Large values of this parameter can allow for faster convergence to the region
where the optimal solution lies; but there is a limit to how close one can
converge to that solution.

» Very large values of this parameter can result in failure to converge.

» We will discuss a hybrid solution that has an adaptive learning rate later in the
course (the ADAM optimiser)

» training epochs: This is simply the number of iterations in the optimisation
process that is used. A larger number of iterations will be required for smaller
learning rates.

L
A.Bevan \é‘Q_sl Queeﬂ |\/|al’y

University of London

s
PRACTICAL MACHINE LEARNING: MORE TENSORFLOW 12

MODEL OPTIMISATION: OPTIMISERS * example_runctionapproximator.py

» We need a figure of merit to optimise.

» For the linear regression example encountered earlier we use
the X2 as a figure of merit.

» In Machine Learning we call quantities like this the loss or cost
function. ltis this that we need to minimise when we optimise
the model parameters.

» Just as with the linear regression example, we take the model
prediction and compare that against some target data to
determine how good the prediction is.

» Unlike the linear regression example we don’t have to worry
about the uncertainty on the target data example because
we use known training examples (this is supervised learning).

L
A.Bevan \é‘Q_sl Queeﬂ |\/|al’y

University of London

PRACTICAL MACHINE LEARNING: MORE TENSORFLOW 13

MODEL OPTIMISATION: OPTIMISERS * example_runctionapproximator.py

» L2(-norm) loss function is given by:
N

Ly =) (ti —yi)°
i=1
» Here the sum is over training examples, of which there are N in
total.
» tiis the true target value of the ith training example.
» yiis the model output prediction of for the ith training example.

» Note: the ordering of the t; and y; in the parentheses is
irrelevant as the difference is squared in this loss function. Sign
conventions can differ for loss functions in general.

' This is just like the X2 function, but without the |
lﬂ normalisation by error on each data point. |

L
A.Bevan \GQ_sl Queen |V|al’y

University of London

s
PRACTICAL MACHINE LEARNING: MORE TENSORFLOW 14

MODEL OPTIMISATION: OPTIMISERS * example_runctionapproximator.py

» Supervised learning:
» The use of training examples of known types allows us to
compute the L2 loss function on an example by example basis.

» This procedure is known as supervised learning, as the

algorithm is trained to identify particular patterns from known
training examples.

» A practical hint for a classification problem is to present
different types of training example to the optimisation
algorithm as this generally leads to a faster convergence of the
training. For the example given this is not an issue as we are
using the model to approximate the function y = x2.

L
A.Bevan \c“Q_sl Queeﬂ |\/|al’y

University of London

&)ﬂ.
PRACTICAL MACHINE LEARNING: MORE TENSORFLOW 15

MODEL OPTIMISATION: OPTIMISERS * example_runctionapproximator.py

» We can implement the L2 loss function in several different
ways in TensorFlow.
» The least squares example uses:

loss = tf.reduce_sum((y - y_) * (y - y.))

» The function approximator example uses:
loss = tf.nn.12_loss(y_ - probabilities)

/N

True label for the example data Model prediction

A.Bevan \-@Qsl Queen Mary

rsity of London

&,‘.
PRACTICAL MACHINE LEARNING: MORE TENSORFLOW 16

MODEL OPTIMISATION: OPTIMISERS * example_runctionapproximator.py

» With the loss defined, we can move on to consider the
optimiser choice.

» We will discuss the ADAM optimiser in a few sessions time,
but for now we just take it on faith that the algorithm works
and will select a good set of model parameters for us.

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)

» See https://www.tensorflow.org/api_docs/python/tf/train
for different optimisers in the tf.train class.

A.Bevan \aQsl Queen Mary

rsity of London

https://www.tensorflow.org/api_docs/python/tf/train

e

PRACTICAL MACHINE LEARNING: MORE TENSORFLOW

Example FunctionApproximator.py

The training is performed by evaluating the optimiser,
using a feed_dict to provide input data (traindata) and
corresponding true values of the function

(target wvalue).

sess.run(optimizer, feed_dict={x_: traindata, y_: target_value})

the_loss = sess.run(loss, feed_dict={x_: traindata, y_: target_value})

The loss function for that optimisation step can be
computed similarly.

For large data samples training can be done by feeding
sub-sets of the data to the optimiser for each epoch.

o

%O Queen Mary
Uni

versity of London

P

PRACTICAL MACHINE LEARNING: MORE TENSORFLOW

Example FunctionApproximator.py

The model output is the value that we need to evaluate for
a regression problem.

For this example we can evaluate the model output while
feeding data to the model.

Here the model output is assigned to a variable called
probabilities.

The model is evaluated by feeding an x value to it:

pred = probabilities.eval(feed_dict={x: [[thisx]]}, session=sess)

o

%O Queen Mary
Uni

versity of London

PRACTICAL MACHINE LEARNING: MORE TENSORFLOW 19

MODEL OPTIMISATION: CLASSIFICATION

» Classification can be performed in one of several ways.

» We can compare the model output regression value to
some threshold in order to determine if the model prefers
one type over another.

» We will encounter this when looking at the Higgs
Kaggle problem, where we use the tf.cast function:

predictions tf.cast(probabilities > 0.5, tf.float32)

o

A.Bevan \c‘, o Queen |V|al’y

University of London

W&E

PRACTICAL MACHINE LEARNING: MORE TENSORFLOW 20

We have seen how to build and optimise both a
classification and a regression model.

There is an example regression model script provided -

we will encounter a classification problem when we
discuss CNNs.

The example model will be used to help you explore some
of the practicalities of machine learning.

L
A.Bevan \E‘Qf! Queeﬂ Mary

University of London

