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INTRODUCTION

» Machine learning is function approximation

» Some set of parameters are fit to data in order to produce a
concrete function definition that is used to approximate the data.

» There are parallels between machine learning training for model
fitting and parameter estimation using least squares and

likelihood approaches.

» So we start by looking at these simpler fitting problems, and
will focus on least squares linear regression*.

» Linear discriminants don't require machine learning to
determine the functional form.

A.Bevan \-@Qsl Queen Mary

* If people wish to read up on the subject of likelihood fitting a good starting point is the book by Edwards entitled Likelihood. rsity of London
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LINEAR REGRESSION

» Consider the equation:

y = f(z)

mx + ¢

» This describes a straight line where
» m is the slope of the line
» cis the constant offset (y value at x=0).

» The problem is how to select the values of m and cin order
to obtain the best possible model of the data.

» To do this we need to make some assumptions.

A.Bevan WOM ueen Mar
* If people wish to read up on the subject of likelihood fitting a good starting point is the book by Edwards entitled Likelihood. o Q'Qg Q rsity of London y
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LINEAR REGRESSION

» 1) Assume that the data have a linear relationship so that

we can describe the relationship between x and y with this
model.

» 2) Define some figure of merit that can be optimised in
order to determine the values of the parameters m and c.

» Define some method that can be used in order to extract
the optimal values of m and c.

» In scientific applications we also want to know the
uncertainty (or error) on m and c.

A.Bevan WOM ueen Mar
* If people wish to read up on the subject of likelihood fitting a good starting point is the book by Edwards entitled Likelihood. o Q'Qg Q y

rsity of London
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LINEAR REGRESSION

» 1) Assume that the data have a linear relationship so that
we can describe the relationship between x and y with this

mOdel. ¥ Let's assume that this function is valid for the problem

» 2) Define some figure of merit that can be optimised in
order to determine the values of the parameters m and c.

y; =y value for it example

~\ 2 o; = error on y value of ith example
2 _ Yi — Y
X = T y = estimate of y given x using the model
. (/

1=1

¥x2 = Sum over all examples of the normalised squared
residual.

s
A.Bevan %Q Queen Mar
* If people wish to read up on the subject of likelihood fitting a good starting point is the book by Edwards entitled Likelihood. o QQ E%versityofLondon y
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LINEAR REGRESSION

» 1) Assume that the data have a linear relationship so that
we can describe the relationship between x and y with this

mOdel. ¥ Let's assume that this function is valid for the problem

» 2) Define some figure of merit that can be optimised in
order to determine the values of the parameters m and c.

y; =y value for it example

N 2  o;=errorony value of ith example
— (mx + c)
E : . m and c are model parameters to be determined
’L
1=1
¥x2 = Sum over all examples of the normalised squared
residual.

A.Bevan WOM ueen Mar
* If people wish to read up on the subject of likelihood fitting a good starting point is the book by Edwards entitled Likelihood. o Q'Qg Q rsity of London y
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LINEAR REGRESSION

» 1) Assume that the data have a linear relationship so that
we can describe the relationship between x and y with this

mOdel. ¥ Let's assume that this function is valid for the problem

» 2) Define some figure of merit that can be optimised in
order to determine the values of the parameters m and c.

y; =y value for it example

N 2  o;=errorony value of ith example
mx+@
E : m and c are model parameters to be determined
1=1
¥x2 = Sum over all examples of the normalised squared
residual.

Note - if we make a simplification that the error is similar for all data points, then we can simplify the problem by

neglecting oi[effectively we set these values to unity].

A.Bevan WOM ueen Mar
* If people wish to read up on the subject of likelihood fitting a good starting point is the book by Edwards entitled Likelihood. o C'Qg Q rsity of London y
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3) To move forward we need a set of data examples (N pairs
of y and x values) to compute the x2 sum.

We also need to be able to systematically vary m and c to
optimise this figure of merit:

The optimal value of these parameters corresponds to
the pair that result in the smallest x2value. This will result
in a model that matches the data the best.

This does not guarantee that the optimal choice of m and
c will result in a good model (overfitting/overtraining will
be discussed later in the course).

\Q/ Queen Mary

University of London



e

PRACTICAL MACHINE LEARNING: LINEAR REGRESSION AND DISCRIMINANTS

3 contd.) We will use a gradient descent parameter optimisation
algorithm (See the optimisation lecture notes later in the course).

For now you can treat this optimisation process as a black box.

Visualise systematically choosing pairs of m and ¢, and for each
point in this 2D space compute X2. From the ensemble of points in
this hyperspace, one can then select the minimum.

Algorithmically this is expensive so we use algorithms that
approximate the search for the minimum that is computationally

more efficient (and adaptable to higher dimensional parameter
spaces).

The analytic solution for this problem is given at the end of these
slides.

o

QO Queen Mary
Uni

versity of London
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LINEAR REGRESSION

» lllustration of the optimisation process for a 1D problem.

» Take an ensemble of measurements of some quantity S*
| = 1 2 3 L S 6 /
S 0662 0.625 0.897 0.614 0.925 0.694 0.601

cs 0.039 0.091 0.100 0.160 0.160 0.061 0.239

» We want to extract the average value of S from these data,
which can be done by scanning through assumed values
(over some sensible range) and computing:

T /S~ 5\
X2:Z( 05i>

1=1

*S is a parameter that is related to matter-antimatter asymmetry in sub-atomic quantum systems. S=sin2f3, where B is a
manifestation of a phase difference between matter and antimatter decays in certain decays of neutral B mesons. The

background behind this measurement is discussed in this Symmetry magazine article and from a technical perspectlve in this

book: The Physics of the B Factories. A Bevan \e,Qsl Queen Mary

rsity of London



https://www.symmetrymagazine.org/article/october-2005/explain-it-in-60-seconds
https://arxiv.org/abs/1406.6311
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LINEAR REGRESSION

» On doing this we obtain a parabolic curve, where a change in one unit
from the minimum corresponds to a change of 1o (the error) in S.

g
o £ -
6

|
(]

x

(8
Illl|Illllllllllllllllllllll

| 1 | l 1 | 1 l 1 1 1 | | | I | | 1 l 1 | |
(9.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76
S

*S is a parameter that is related to matter-antimatter asymmetry in sub-atomic quantum systems. S=sin2f3, where B is a
manifestation of a phase difference between matter and antimatter decays in certain decays of neutral B mesons. The
background behind this measurement is discussed in this Symmetry magazine article and from a technical perspective in this

book: The Physics of the B Factories. A.Bevan \5,615/ Queen Mary

University of London



https://www.symmetrymagazine.org/article/october-2005/explain-it-in-60-seconds
https://arxiv.org/abs/1406.6311
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LINEAR REGRESSION

» On doing this we obtain a parabolic curve, where a change in one unit
from the minimum corresponds to a change of 1o (the error) in S.

g
o £

6 . T ——— ‘;g‘ = =
R ' The gradient descent algorithm we will
s - | use will start with some initial value and
- will determine a new estimate of the
- parameter. Generally we expect that this
4— new estimate is closer to the minimum
- than the first guess.
3_ . . . .
N 'Sometimes the algorithm will fail to
N converge toward a minimum.
21— i I
I
B 1 1 1 1 | | I | | 1 l 1 1 1
(9.62 0. 0.7 0.72 0.74 0.76
S

*S is a parameter that is related to matter-antimatter asymmetry in sub-atomic quantum systems. S=sin2f3, where B is a
manifestation of a phase difference between matter and antimatter decays in certain decays of neutral B mesons. The
background behind this measurement is discussed in this Symmetry magazine article and from a technical perspective in this
book: The Physics of the B Factories.

L
A.Bevan \Q“Q_sl Queen |\/|al’y

University of London
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LINEAR REGRESSION

» We can read the minimum off of a 1D X2 scan.

» However for a 2D problem we have to scan through points in a grid,
and from that array of results choose the optimal.

» e.g.see the logarithmic grid search performed by R'’s libsvm
package, which performs a 2D parameter scan.

» For more dimensions than 2 it is computationally expensive to perform
a parameter scane, and difficult to visualise this approach.

*S is a parameter that is related to matter-antimatter asymmetry in sub-atomic quantum systems. S=sin2f3, where B is a
manifestation of a phase difference between matter and antimatter decays in certain decays of neutral B mesons. The
background behind this measurement is discussed in this Symmetry magazine article and from a technical perspective in this

book: The Physics of the B Factories. A.Bevan \5,@5/ Queen Mary

University of London
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Example LinearRegression.py

We need to select some parameters for the optimisation
process:

learning_rate = 0.005
training_epochs = 10

intercept
noise

# data are inherently noisy, so we generate noise

learning rate: noise:

step size for the optimisation process Data are inherently noisy, this
parameter introduces an element of

randomness to the value of y for a
number of times the optimisation is run given x.

training epochs:

Ngen:
number of simulated examples to use (=N in the X2 sum)

gradient and intercept:
the parameters m and c, respectively.

University of London

&
QO Queen Mary
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Example LinearRegression.py

Implementing linear regression function for optimisation:

]

tf.placeholder(tf.float32, [None, 1], name="x")
tf.placeholder(tf.float32, [None, 1], name="y_")

parameters of the model are m (gradient) and ¢ (constant offset)

- pick random starting values for fit convergence
tf.Variable(tf.random_uniform([1]), name="c")
tf.Variable(tf.random_uniform([1]), name="m")
m?*x_+C

\g__ Queen Mary

University of London
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Example LinearRegression.py

Implementing linear regression function for optimisation:

._(ZP@C)Y

1=1

x and y; are the data for the ith example, represented by the placeholders x_and y

tf.placeholder(tf.float32, [None, 1], name="x")
tf.placeholder(tf.float32, [None, 1], name="y_")

parameters of the model are m (gradient) and ¢ (constant offset)

- pick random starting values for fit convergence
tf.Variable(tf.random_uniform([1]), name="c")
tf.Variable(tf.random_uniform([1]), name="m")

m* x_+ C

&
QO Queen Mary
Uni

versity of London
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Example LinearRegression.py

Implementing linear regression function for optimisation:

2 Z (@ +ﬂ 2

m and c are the model parameters, represented by the Variables m and c. The variable y
corresponds to the model that is our estimator of the data given by the placeholder y .

tf.placeholder(tf.float32, [None, 1], name="x")
tf.placeholder(tf.float32, [None, 1], name="y_")

parameters of the model are m (gradient) and ¢ (constant offset)

- pick random starting values for fit convergence
tf.Variable(tf.random_uniform([1]), name="c")
tf.Variable(tf.random_uniform([1]), name="m")

m* x_+ C

\g__ Queen Mary

University of London
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Example LinearRegression.py

We need to define a loss function that will be optimised.
For the problem at hand the loss function is X2, where we
let o=1.

# assume all data have equal uncertainties to avoid having to define an example by
# example uncertainty, and define the loss function as a simplified chiA2 sum

loss = tf.reduce_sum((y - y_) * (y - y_))

An optimiser* is required in order to minimise the loss
function and determine the “optimal” parameter values for
m and c.

# use a gradient descent optimiser

train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

o

QO Queen Mary
Uni

versity of London
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Example LinearRegression.py

The minimisation is performed by running the training step
(computing the loss function and updating parameters)
the specified number of training epochs:

for step in range(training_epochs):
# run the minimiser

sess.run(train_step, feed_dict={x_: data_x, y_: data_y})

As the loss function depends on x and y placeholders,
we need to feed the data (these are NumPy arrays) to the
optimiser train step for each training epoch.

o

QO Queen Mary
Uni

versity of London
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LINEAR REGRESSION  » Example LinearRegression.py

» The output of this script can be seen below:

Training Parameters*:

Input Values: N 100 Output Values:
m = 2.0 N 1 m = 0.963...
Epochs =
= V. = 1.087...
¢=0-> Learning rate = 0.005 c =1.08
3.0 I Linear Begression Elxample
Recall that the parameters m and c are
25| } initialised using a random number.

The optimisation algorithm will iteratively
search through the (m, c) space to determine
the optimal set of parameters.

The solution found depends on:
> the starting point

05pss .
* learning rate

0.0 1 1 1 | * number of training epochs
0.0 0.2 0.4 0.6 0.8 1.0

&
* These will be explained in more detail when we discuss optimisation. A.Bevan %Q Queen Mary
P P

University of London
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LINEAR REGRESSION  » Example LinearRegression.py

» The output of this script can be seen below:

Training P ters*:
Input Values: rlillnlng _a;a(i)rge °r Output Values:

m= 2.0 m = 0.985 ...

_ NEpochs =2 _
c=0> Learning rate = 0.005 c =1.016...

3.0 Linear Regression Example

251

0.0 0.2 0.4 0.6 0.8 1.0

&
* These will be explained in more detail when we discuss optimisation. A.Bevan %Q Queen Mary

University of London
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LINEAR REGRESSION  » Example LinearRegression.py

» The output of this script can be seen below:

Training P ters*:
Input Values: rlillnlng _a;a(i)rge °r Output Values:

m=2.0 m = 1.493...

_ NEpochs =10 _
c=0> Learning rate = 0.005 ¢ =0.776...

3.0 Linear Regression Example

251

00 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0

&
* These will be explained in more detail when we discuss optimisation. A.Bevan %Q Queen Mary

University of London
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24

LINEAR REGRESSION  » Example LinearRegression.py

» The output of this script can be seen below:

Training Parameters™:
N =100
NEpochs = 100
Learning rate = 0.005

Input Values:
m = 2.0
c=0.5

Linear Regression Example

3.0

Output Values:
m = 1.993...
c =0.523...

Linear Regression Example

20.0 -
17.5 A
15.0
12.5 A

Loss

10.0
7.5 1
5.0 1

25 -

Loss function

converges to a

single value

00 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 6

* These will be explained in more detail when we discuss optimisation.

20

40 60 80

Training epoch

100

L
A.Bevan \ééQ_sl Queeﬂ |\/|al’y

University of London
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LINEAR REGRESSION  » Example LinearRegression.py

» The output of this script can be seen below:

Training Parameters*:

Input Values: Output Values:

N =100
m=2.0 m = 1.993...
c=05 Nepochs =100 ¢ =0.523
' Learning rate = 0.005 T
Linear Regression Example Linear Regression Example
2.0 1
The values of the parameters c
12 - . 18 -
and m converge to a single value.
16 -
10 -
v E 14
0.8 1
12 -
0.6 1 10 A
0 20 40 60 80 100 0 20 40 60 80 100
Training epoch Training epoch

&
* These will be explained in more detail when we discuss optimisation. A.Bevan %Q Queen Mary

University of London
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LINEAR REGRESSION

» Summary:

» The linear regression problem discussed here uses a loss function that is based on
the square residuals of data vs some prediction.

» This allows us to model a simple linear relationship between some input x and
some output y, where the functional form is just:

» Yy = mx+c
» where m and c are parameters to determine.

» If we addressed the issue of uncertainties in the data, we could also extract
uncertainties on the optimal values of m and c obtained, and this would be fitting.

» This approach and will be generalised when we consider neural networks and
extensions to non-linear problems that can not be solved analytically.

» For machine learning problems we don’t care about the uncertainty on the optimal
parameters determined(®).

(*) Baye.sian networks do allow for a probabilit?/ 'distribution for weights, a.nd so this B \5,@4 Queen I\/Iary
remark is really method dependent. That detail is beyond the scope of this course. = University of London
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FISHER DISCRIMINANT

» This is an analytic algorithm that was inspired by the
classification problem for species of iris in the 1930's!1].

» Starting point is the assumption that data are distributed
according to a multi-Gaussian probability (e.g. random
sampling of data), and that one wishes to maximise the
separation between different classes (types) of iris.

» Maximise the separation of the mean distributions.

» Minimise the sum of the covariances.

n WA
11R. A. Fisher, Ann. Eug., 7, 179188 (1936). Q4 Queen Mary

UUUUUUUUU y of London
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FISHER DISCRIMINANT

» The Fisher discriminant is given by
F=a'z+8
a=W"(pa—ps)
» a: avector of weight parameters
» X: data, with the shape [Nexample, dim(example)]

» W: Sum of covariance matrices for classes A and B
» Mag: Mean value of class A or B

— e —— = e ——— — e —— o~ E——— = =

| NOTE I I|ke this algorithm as an example as it can help us understand the data and how to separate |

V

| classes before looking in more detail at a neural network as the underlying equations appear later in

| the course.
fi

| It is also a simple algorithm that can be used as a benchmark to check that a more sophisticated l
algorithm performs at least as well as this one. Such a sanity check can be useful in low dimensional ]
physics problems and it may or may not be useful for you machme Iearnmg work in the future.

— — = ———— e === =

evan \ "I
1R. A. Fisher, Ann. Eug., 7, 179188 (1936). B\ QU‘?FD Mary
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FISHER DISCRIMINANT

» 3 scripts are required for this example:

» Example Fisher.py
» Fisher.py
» PracticalMachineLearning.py

» The first of these three is the one that a user needs to work
with, the others provide an implementation of the algorithm.
» Fisher.py is a class that implements the computation of a
and processing of the data according to the equation for
f.
» PracticalMachinelLearning.py includes a number of helper
functions for this course.

n WO
1R A. Fisher, Ann. Eug., 7, 179188 (1936). v Queen Mary
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FISHER DISCRIMINANT

» Consider the problem where we have two classes of event. Some
events of type A (signal) and some events of type B (background).

» These events are described by a 2D feature space, consisting of
the dimensions x and y.

» We want to compute F in order for us to be able to distinguish
between types A and B.

60 { W= Class A 80 - I Class A
Class B Class B

70 A
60 -
50 A

40 1

Number of examples

20 A

10 A

L
evan ’I
11R. A. Fisher, Ann. Eug., 7, 179188 (1936). A Bevan W Queen Mary

University of London
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FISHER DISCRIMINANT

» Consider the problem where we have two classes of event. Some
events of type A (signal) and some events of type B (background).

» These events are described by a 2D feature space, consisting of
the dimensions x and y.

» We want to compute F in order for us to be able to distinguish
between types A and B.

F=alz+8

* For this example we can see that Fis a rotated
axis in the (x, y) plane along which we can
project the data in order to obtain a smaller
overlap than in either of the individual features

(x ory)

(@)
o
1

P Class A
Class B

(O,
o
1

I
o

Number of examples
N w
o o
1

» The offset B is arbitrary and is ignored in this
calculation as it just changes the position of an

0 - - example on the F axis without changing the

-15 -10 -5 0 5 10 15

F separation between the classes.

&
evan ’I
1 R. A. Fisher, Ann. Eug., 7, 179188 (1936). A Bevan N Clucen Mery

[
o
1
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We have discussed least squares regression as a simple
numerical optimisation problem.

This has a large number of applications scientifically, but
is limited. We will explore neural networks as a
generalisation to this algorithm.

We have also discussed Fisher discriminants as an
algorithmic way to increase separation between two
classes of events by mapping an N dimensional input
feature space into a 1 dimensional output feature space.

o

QO Queen Mary
Uni

versity of London
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SUGGESTED READING

» C. Bishop: Neural Networks for Pattern Recognition

4

» C. Bishop: Pattern Recognition and Machine Learning

4

» T.Hastie, R. Tibshirani, J. Friedman, Elements of statistical
learning

4

L
A.Bevan \Q“Q_‘:;I Queeﬂ |\/|al’y

University of London
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APPENDIX: LINEAR REGRESSION

» We can return to the linear regression problem and solve
this analytically. The following notes follow the convention
that the slope of the line m=a, and that the constant offset

c=Db.

Mz

-2 (M50 — gy

» This is minimised* when

ai—o and 2C

oa b =0

* For this parabolic problem there is a single turning point and that is a minimum. For arbitrary functions we would need to use the

second derivative to distinguish between maxima, minima and points of inflection. A Bevan \c‘,Qsl Queen Mary
rsity of London
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APPENDIX: LINEAR REGRESSION

» The derivatives of X2 with respect to a and b are:

0% Ay , OX?
a% = ;8—( yi — ax; — b)” a—ab = —2N(y —ax —b)
N If we assume that the uncertainties
- Z Zmi(yi —ax; — b), are equal for all i, then this

1 becomes a constant factor that
drops out of the problem.

1

— —Zszyz — ax — bx;,

The bar over x, y, xy, etc. denotes
the average value of that quantity.

= —2N(my — ax? — bT).
» Leading to the two simultaneous equations:
Ty —ax2 —bT = 0

y—ar —b = 0

A.Bevan \¢Qsl Queen Mary

rsity of London



PRACTICAL MACHINE LEARNING: LINEAR REGRESSION AND DISCRIMINANTS 36

APPENDIX: LINEAR REGRESSION

» From these we can solve for a and b, giving:

Ty —br Ty —7TY
2 x2 — 72

b = Y—aZ.

» We can also consider the uncertainty on a and b from the
above equations, and considering error propagation
(noting the error o is on y and not x) we obtain:

7 la) = N(a;_Q;f?)
a2(b) = 12332
(b) N (22 — 7%)

o

A.Bevan \c‘, o Queen |\/|al’y

University of London



PRACTICAL MACHINE LEARNING: LINEAR REGRESSION AND DISCRIMINANTS 37

APPENDIX: FISHER DISCRIMINANT

» Consider this 2D problem:

Ua g are the mean values of A and B, respectively,
given by

1 N
HA Biu — N Z;uiy U=,y
1=

i.e. (MBy)™=(MBx MBy)  and (pay)™=(Hax MAy):

PB,X ' HA,X HB,y ' HA,y

» The means () and standard deviations (o) describe the
distribution of data; where oap are 2D covariance matrices.

» We can compute the mean (M) and variance (2) of the Fisher
distribution USiﬂg Map = ()AT/LA,BZZ(M/LA,B,

i
EQA,B = (XTU,%;,BO‘:E E 0 A, B
Lo

L
A.Bevan \Q“Q_‘:;I Queeﬂ |\/|al’y

University of London
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APPENDIX: FISHER DISCRIMINANT

» Optimise J, where

(M4 — Mp)? P p | <
J(a) = —=3 > (Ma—Mp]* = |> ailpa—ps)i| | D ailpa—ps);
2+ 2p | i=1 1 =1 ]
= ) ailpa —pp)i(na — pB)jay,
ij=1
= ol Ba,
Y4 +X% = olcda+aloia,
= ol Wa,
» Thus:
al Ba O.J
J(a) = “Two Whichisoptimised for (@) _ 0

Oy

) resu|ting IN: (v X {/V_1 (,U — 1L ) _» The a are given up to an arbitrary scale factor.
—A =B » The mean value of F can be offset by B arbitrarily.
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