

DR ADRIAN BEVAN

PRACTICAL MACHINE LEARNING

LINEAR REGRESSION AND LINEAR DISCRIMINANTS

LECTURE PLAN

- Introduction
- Linear regression
- Fisher Discriminant

QMUL Summer School: https://www.qmul.ac.uk/summer-school/

Practical Machine Learning QMplus Page: https://qmplus.qmul.ac.uk/course/view.php?id=10006

INTRODUCTION

- Machine learning is function approximation
- Some set of parameters are fit to data in order to produce a concrete function definition that is used to approximate the data.
- There are parallels between machine learning training for model fitting and parameter estimation using least squares and likelihood approaches.
 - So we start by looking at these simpler fitting problems, and will focus on least squares linear regression*.
- Linear discriminants don't require machine learning to determine the functional form.

Consider the equation:

$$y = f(x)$$
$$mx + c$$

- This describes a straight line where
 - m is the slope of the line
 - \triangleright c is the constant offset (y value at x=0).
- The problem is how to select the values of m and c in order to obtain the best possible model of the data.
 - To do this we need to make some assumptions.

- 1) Assume that the data have a linear relationship so that we can describe the relationship between x and y with this model.
- 2) Define some figure of merit that can be optimised in order to determine the values of the parameters m and c.
- Define some method that can be used in order to extract the optimal values of m and c.
 - In scientific applications we also want to know the uncertainty (or error) on m and c.

- 1) Assume that the data have a linear relationship so that we can describe the relationship between x and y with this model.
 ✓ Let's assume that this function is valid for the problem
- 2) Define some figure of merit that can be optimised in order to determine the values of the parameters m and c.

$$\chi^2 = \sum_{i=1}^{N} \left(\frac{y_i - \widehat{y}}{\sigma_i} \right)^2$$

 $y_i = y$ value for i^{th} example

 σ_i = error on y value of i^{th} example

 \hat{y} = estimate of y given x using the model

 χ^2 = Sum over all examples of the normalised squared residual.

- 1) Assume that the data have a linear relationship so that we can describe the relationship between x and y with this model. ✓ Let's assume that this function is valid for the problem
- > 2) Define some figure of merit that can be optimised in order to determine the values of the parameters m and c.

 $y_i = y$ value for i^{th} example

 σ_i = error on y value of i^{th} example

 χ^2 = Sum over all examples of the normalised squared residual.

- 1) Assume that the data have a linear relationship so that we can describe the relationship between x and y with this model. ✓ Let's assume that this function is valid for the problem
- > 2) Define some figure of merit that can be optimised in order to determine the values of the parameters m and c.

 $y_i = y$ value for i^{th} example

 σ_i = error on y value of i^{th} example

 χ^2 = Sum over all examples of the normalised squared residual.

Note - if we make a simplification that the error is similar for all data points, then we can simplify the problem by neglecting σ_i [effectively we set these values to unity].

- ▶ 3) To move forward we need a set of data examples (N pairs of y and x values) to compute the χ^2 sum.
- We also need to be able to systematically vary m and c to optimise this figure of merit:
 - The optimal value of these parameters corresponds to the pair that result in the smallest χ^2 value. This will result in a model that matches the data the best.
 - This does not guarantee that the optimal choice of m and c will result in a good model (overfitting/overtraining will be discussed later in the course).

- 3 contd.) We will use a gradient descent parameter optimisation algorithm (See the optimisation lecture notes later in the course).
 - For now you can treat this optimisation process as a black box.
 - ▶ Visualise systematically choosing pairs of m and c, and for each point in this 2D space compute X². From the ensemble of points in this hyperspace, one can then select the minimum.
 - Algorithmically this is expensive so we use algorithms that approximate the search for the minimum that is computationally more efficient (and adaptable to higher dimensional parameter spaces).
 - The analytic solution for this problem is given at the end of these slides.

- Illustration of the optimisation process for a 1D problem.
- Take an ensemble of measurements of some quantity S*

i	= 1	2	3	4	5	6	7
S	0.662	0.625	0.897	0.614	0.925	0.694	0.601
σ_S	0.039	0.091	0.100	0.160	0.160	0.061	0.239

We want to extract the average value of S from these data, which can be done by scanning through assumed values (over some sensible range) and computing:

$$\chi^2 = \sum_{i=1}^7 \left(\frac{S_i - S}{\sigma_{S_i}} \right)^2$$

^{*}S is a parameter that is related to matter-antimatter asymmetry in sub-atomic quantum systems. S= $\sin 2\beta$, where β is a manifestation of a phase difference between matter and antimatter decays in certain decays of neutral B mesons. The background behind this measurement is discussed in this <u>Symmetry magazine article</u> and from a technical perspective in this book: The Physics of the B Factories.

• On doing this we obtain a parabolic curve, where a change in one unit from the minimum corresponds to a change of 1σ (the error) in S.

^{*}S is a parameter that is related to matter-antimatter asymmetry in sub-atomic quantum systems. $S=\sin 2\beta$, where β is a manifestation of a phase difference between matter and antimatter decays in certain decays of neutral B mesons. The background behind this measurement is discussed in this <u>Symmetry magazine article</u> and from a technical perspective in this book: <u>The Physics of the B Factories</u>.

On doing this we obtain a parabolic curve, where a change in one unit from the minimum corresponds to a change of 1σ (the error) in S.

^{*}S is a parameter that is related to matter-antimatter asymmetry in sub-atomic quantum systems. S=sin2β, where β is a manifestation of a phase difference between matter and antimatter decays in certain decays of neutral B mesons. The background behind this measurement is discussed in this Symmetry magazine article and from a technical perspective in this book: The Physics of the B Factories.

- ▶ We can read the minimum off of a 1D X² scan.
- However for a 2D problem we have to scan through points in a grid, and from that array of results choose the optimal.
 - e.g. see the logarithmic grid search performed by R's libsvm package, which performs a 2D parameter scan.
- For more dimensions than 2 it is computationally expensive to perform a parameter scane, and difficult to visualise this approach.

^{*}S is a parameter that is related to matter-antimatter asymmetry in sub-atomic quantum systems. S=sin2β, where β is a manifestation of a phase difference between matter and antimatter decays in certain decays of neutral B mesons. The background behind this measurement is discussed in this <u>Symmetry magazine article</u> and from a technical perspective in this book: The Physics of the B Factories.

Example_LinearRegression.py

We need to select some parameters for the optimisation process:

```
learning_rate = 0.005
training_epochs = 10
min_x = 0
max_x = 1
Ngen = 100
gradient = 2.0
intercept = 0.5
noise = 0.1 # data are inherently noisy, so we generate noise
```

learning rate:

step size for the optimisation process

training_epochs:

number of times the optimisation is run

Ngen:

number of simulated examples to use (=N in the X^2 sum)

gradient and intercept:

the parameters m and c, respectively.

noise:

Data are inherently noisy, this parameter introduces an element of randomness to the value of y for a given x.

Example_LinearRegression.py

Implementing linear regression function for optimisation:

$$\chi^2 = \sum_{i=1}^{N} \left(\frac{y_i - (mx + c)}{\sigma_i} \right)^2$$

```
x_ = tf.placeholder(tf.float32, [None, 1], name="x")
y_ = tf.placeholder(tf.float32, [None, 1], name="y_")

# parameters of the model are m (gradient) and c (constant offset)
# - pick random starting values for fit convergence
c = tf.Variable(tf.random_uniform([1]), name="c")
m = tf.Variable(tf.random_uniform([1]), name="m")
y = m * x_ + c
```


Example_LinearRegression.py

Implementing linear regression function for optimisation:

$$\chi^2 = \sum_{i=1}^{N} \left(\frac{y_i - (mx + c)}{\sigma_i} \right)^2$$

x and y_i are the data for the ith example, represented by the placeholders \mathbf{x} and \mathbf{y}

```
x_ = tf.placeholder(tf.float32, [None, 1], name="x")
y_ = tf.placeholder(tf.float32, [None, 1], name="y_")

# parameters of the model are m (gradient) and c (constant offset)
# - pick random starting values for fit convergence
c = tf.Variable(tf.random_uniform([1]), name="c")
m = tf.Variable(tf.random_uniform([1]), name="m")
y = m * x_ + c
```


Example_LinearRegression.py

Implementing linear regression function for optimisation:

$$\chi^2 = \sum_{i=1}^{N} \left(\frac{y_i - (mx + c)}{\sigma_i} \right)^2$$

m and c are the model parameters, represented by the Variables \mathbf{m} and \mathbf{c} . The variable \mathbf{y} corresponds to the model that is our estimator of the data given by the placeholder \mathbf{y} _.

```
x_ = tf.placeholder(tf.float32, [None, 1], name="x")
y_ = tf.placeholder(tf.float32, [None, 1], name="y_")

# parameters of the model are m (gradient) and c (constant offset)
# - pick random starting values for fit convergence
c = tf.Variable(tf.random_uniform([1]), name="c")
m = tf.Variable(tf.random_uniform([1]), name="m")
y = m * x_ + c
```


Example_LinearRegression.py

We need to define a loss function that will be optimised. For the problem at hand the loss function is X^2 , where we let σ =1.

```
# assume all data have equal uncertainties to avoid having to define an example by # example uncertainty, and define the loss function as a simplified chi^2 sum loss = tf.reduce_sum((y - y_) * (y - y_))
```

An optimiser* is required in order to minimise the loss function and determine the "optimal" parameter values for m and c.

```
# use a gradient descent optimiser
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
```

Example_LinearRegression.py

The minimisation is performed by running the training step (computing the loss function and updating parameters) the specified number of training epochs:

```
for step in range(training_epochs):
    # run the minimiser
    sess.run(train_step, feed_dict={x_: data_x, y_: data_y})
```

As the loss function depends on x_ and y_ placeholders, we need to feed the data (these are NumPy arrays) to the optimiser train_step for each training epoch.

Example_LinearRegression.py

The output of this script can be seen below:

$$m = 2.0$$

$$c = 0.5$$

$$N = 100$$

$$N_{Epochs} = 1$$

Learning rate =
$$0.005$$

Output Values:

$$m = 0.963...$$

$$c = 1.087...$$

Recall that the parameters m and c are initialised using a random number.

The optimisation algorithm will iteratively search through the (m, c) space to determine the optimal set of parameters.

The solution found depends on:

- the starting point
- learning rate
- number of training epochs

Example_LinearRegression.py

The output of this script can be seen below:

Training Parameters*:

$$N = 100$$
 $N_{Epochs} = 2$
Learning rate = 0.005

Output Values: m = 0.985 ... c = 1.016 ...

Example_LinearRegression.py

The output of this script can be seen below:

Training Parameters*:

$$N = 100$$

 $N_{Epochs} = 10$
Learning rate = 0.005

Output Values: m = 1.493... c = 0.776...

Example_LinearRegression.py

The output of this script can be seen below:

Training Parameters*:

$$N = 100$$

 $N_{Epochs} = 100$
Learning rate = 0.005

Output Values: m = 1.993... c = 0.523...

^{*} These will be explained in more detail when we discuss optimisation.

Example_LinearRegression.py

The output of this script can be seen below:

Training Parameters*: N = 100 $N_{Epochs} = 100$ Learning rate = 0.005

Output Values: m = 1.993... c = 0.523...

^{*} These will be explained in more detail when we discuss optimisation.

Summary:

- The linear regression problem discussed here uses a loss function that is based on the square residuals of data vs some prediction.
- This allows us to model a simple linear relationship between some input x and some output y, where the functional form is just:
 - y = mx + c
- where m and c are parameters to determine.
- If we addressed the issue of uncertainties in the data, we could also extract uncertainties on the optimal values of m and c obtained, and this would be fitting.
- This approach and will be generalised when we consider neural networks and extensions to non-linear problems that can not be solved analytically.
 - ▶ For machine learning problems we don't care about the uncertainty on the optimal parameters determined^(*).

- This is an analytic algorithm that was inspired by the classification problem for species of iris in the 1930's^[1].
- Starting point is the assumption that data are distributed according to a multi-Gaussian probability (e.g. random sampling of data), and that one wishes to maximise the separation between different classes (types) of iris.
 - Maximise the separation of the mean distributions.
 - Minimise the sum of the covariances.

The Fisher discriminant is given by

$$F = \alpha^T x + \beta$$
$$\alpha = W^{-1}(\mu_A - \mu_B)$$

- a: a vector of weight parameters
- x: data, with the shape [Nexample, dim(example)]
- W: Sum of covariance matrices for classes A and B
- \triangleright $\mu_{A,B}$: Mean value of class A or B

NOTE: I like this algorithm as an example as it can help us understand the data and how to separate classes before looking in more detail at a neural network as the underlying equations appear later in the course.

It is also a simple algorithm that can be used as a benchmark to check that a more sophisticated algorithm performs at least as well as this one. Such a sanity check can be useful in low dimensional physics problems and it may or may not be useful for you machine learning work in the future.

- 3 scripts are required for this example:
 - Example_Fisher.py
 - Fisher.py
 - PracticalMachineLearning.py
- The first of these three is the one that a user needs to work with, the others provide an implementation of the algorithm.
 - Fisher.py is a class that implements the computation of a and processing of the data according to the equation for F.
 - PracticalMachineLearning.py includes a number of helper functions for this course.

- Consider the problem where we have two classes of event. Some events of type A (signal) and some events of type B (background).
- These events are described by a 2D feature space, consisting of the dimensions x and y.
- We want to compute \mathcal{F} in order for us to be able to distinguish between types A and B.

- Consider the problem where we have two classes of event. Some events of type A (signal) and some events of type B (background).
- These events are described by a 2D feature space, consisting of the dimensions x and y.
- We want to compute \mathcal{F} in order for us to be able to distinguish between types A and B.

$$F = \alpha^T x + \beta$$

- For this example we can see that \mathcal{F} is a rotated axis in the (x, y) plane along which we can project the data in order to obtain a smaller overlap than in either of the individual features (x or y)
- The offset β is arbitrary and is ignored in this calculation as it just changes the position of an example on the \mathcal{F} axis without changing the separation between the classes.

SUMMARY

- We have discussed least squares regression as a simple numerical optimisation problem.
 - This has a large number of applications scientifically, but is limited. We will explore neural networks as a generalisation to this algorithm.
- We have also discussed Fisher discriminants as an algorithmic way to increase separation between two classes of events by mapping an N dimensional input feature space into a 1 dimensional output feature space.

SUGGESTED READING

- C. Bishop: Neural Networks for Pattern Recognition
 - Chapters: 2
- C. Bishop: Pattern Recognition and Machine Learning
 - Chapters: 4
- T. Hastie, R. Tibshirani, J. Friedman, *Elements of statistical learning*
 - Chapter: 4

APPENDIX: LINEAR REGRESSION

We can return to the linear regression problem and solve this analytically. The following notes follow the convention that the slope of the line m=a, and that the constant offset c=b.

$$\chi^{2} = \sum_{i=1}^{N} \left(\frac{y_{i} - ax_{i} - b}{\sigma(y_{i})} \right)^{2} = \frac{1}{\sigma^{2}} \sum_{i=1}^{N} (y_{i} - ax_{i} - b)^{2}$$

This is minimised* when

$$\frac{\partial \chi^2}{\partial a} = 0$$
, and $\frac{\partial \chi^2}{\partial b} = 0$,

^{*} For this parabolic problem there is a single turning point and that is a minimum. For arbitrary functions we would need to use the second derivative to distinguish between maxima, minima and points of inflection.

A. Beyan M. OLICEN M.

APPENDIX: LINEAR REGRESSION

The derivatives of X² with respect to a and b are:

$$\sigma^2 \frac{\partial \chi^2}{\partial a} = \sum_{i=1}^N \frac{\partial}{\partial a} \left(y_i - ax_i - b \right)^2, \qquad \sigma^2 \frac{\partial \chi^2}{\partial b} = -2N \left(\overline{y} - a\overline{x} - b \right)$$

$$= \sum_{i=1}^N -2x_i (y_i - ax_i - b), \qquad \text{If we assume that the uncertainties are equal for all i, then this becomes a constant factor that drops out of the problem.}$$

$$= -2\sum_{i=1}^N x_i y_i - ax_i^2 - bx_i, \qquad \text{The bar over x, y, xy, etc. denotes the average value of that quantity.}$$

$$\sigma^2 \frac{\partial \chi^2}{\partial b} = -2N(\overline{y} - a\overline{x} - b)$$

If we assume that the uncertainties are equal for all i, then this becomes a constant factor that drops out of the problem.

The bar over x, y, xy, etc. denotes the average value of that quantity.

Leading to the two simultaneous equations:

$$\overline{xy} - a\overline{x^2} - b\overline{x} = 0$$

$$\overline{y} - a\overline{x} - b = 0$$

APPENDIX: LINEAR REGRESSION

From these we can solve for a and b, giving:

$$a = \frac{\overline{xy} - b\overline{x}}{\overline{x^2}} = \frac{\overline{xy} - \overline{x}\overline{y}}{\overline{x^2} - \overline{x}^2}$$

$$b = \overline{y} - a\overline{x}.$$

We can also consider the uncertainty on a and b from the above equations, and considering error propagation (noting the error σ is on y and not x) we obtain:

$$\sigma^{2}(a) = \frac{\sigma^{2}}{N(\overline{x^{2}} - \overline{x}^{2})}$$

$$\sigma^{2}(b) = \frac{\sigma^{2}\overline{x^{2}}}{N(\overline{x^{2}} - \overline{x}^{2})}$$

APPENDIX: FISHER DISCRIMINANT

Consider this 2D problem:

 $\mu_{A,B}$ are the mean values of A and B, respectively, given by

$$\mu_{A,B;u} = \frac{1}{N} \sum_{i=1}^{N} u_i, \ u = x, y$$

i.e.
$$(\mu_{B,y})^T = (\mu_{B,x}, \mu_{B,y})$$
 and $(\mu_{A,y})^T = (\mu_{A,x}, \mu_{A,y})$.

- The means (μ) and standard deviations (σ) describe the distribution of data; where $\sigma_{A,B}$ are 2D covariance matrices.
- We can compute the mean (M) and variance (Σ) of the Fisher distribution using $M_{A,B} = \alpha^T \mu_{A,B} = \sum_i \alpha_i \mu_{A,B}$,

$$\Sigma_{A,B}^2 = \alpha^T \sigma_{A,B}^2 \alpha = \sum_{i} \sum_{j} \alpha_i \sigma_{ij} A_{,B} \alpha_j$$

APPENDIX: FISHER DISCRIMINANT

Optimise J, where

$$J(\alpha) = \frac{[M_A - M_B]^2}{\Sigma_A^2 + \Sigma_B^2} \qquad [M_A - M_B]^2 = \left[\sum_{i=1}^n \alpha_i (\mu_A - \mu_B)_i\right] \left[\sum_{j=1}^n \alpha_j (\mu_A - \mu_B)_j\right]$$
$$= \sum_{i,j=1}^n \alpha_i (\mu_A - \mu_B)_i (\mu_A - \mu_B)_j \alpha_j,$$
$$= \alpha^T B \alpha,$$
$$\Sigma_A^2 + \Sigma_B^2 = \alpha^T \sigma_A^2 \alpha + \alpha^T \sigma_B^2 \alpha,$$
$$= \alpha^T W \alpha.$$

▶ Thus:

$$J(\alpha) = \frac{\alpha^T B \alpha}{\alpha^T W \alpha} \quad \text{which is optimised for} \quad \frac{\partial J(\alpha)}{\partial \alpha} = 0$$

resulting in: $\alpha \propto W^{-1}(\underline{\mu}_A - \underline{\mu}_B)$. The a are given up to an arbitrary scale factor. The mean value of $\mathcal F$ can be offset by β arbitrarily.

