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LECTURE PLAN

» Perceptrons

» Activation functions

» Artificial Neural Network
» Multilayer Perceptrons

» Training

» Summary
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PERCEPTRONS

» Rosenblatt!! coined the concept of a perceptron as a probabilistic model for
information storage and organisation in the brain.

» Origins in trying to understand how information from the retina is

processed . Simplified view of Fig 1 from Rosenblatt’s paper.
Projection R1
' o R Responses
Retina (response 2 P
function) Ra

» Start with inputs from different cells.

» Process those data: "if the sum of excitatory or inhibitory impulse

intensities is either equal to or greater than the threshold (0) ... then
the A unit fires”.

» This is an all or nothing response-based system.

o
evan \‘ ’I
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. AB L Queen Mary

University of London
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PERCEPTRONS

» This picture can be generalised as follows:

» Take some number, n, of input features

» Compute the sum of each of the features multiplied by

some factor assigned to it to indicate the importance of
that information.

» Compare the sum against some reference threshold.

» Give a positive output above some threshold.

evan \‘ 'I
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958.  Bevan O Queen Mary
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PERCEPTRONS

» lllustrative example:
» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).
Wi 0
+ = <
WX - 1

L
evan \c\, of
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. e L %Egyeofrlnlu\o/nlary
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PERCEPTRONS

» lllustrative example:
» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).

>, > 9 Output

w2

L
evan \‘ ’I
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. e ) %Egyeofrlnmary
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PERCEPTRONS

» lllustrative example:
» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).
If wix1 + woxe > 0
Output = 1
else
Output =0

L
evan \c\, of
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. e L %Egyeofrlnlu\o/nlary
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PERCEPTRONS

» lllustrative example:
» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).

If wix1 + woxo >0

Output = 1 ' Thisis called a |
binary activation §
else function

Output =0

L
evan \‘ ’I
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. e ) %Egyeofrlnmary
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PERCEPTRONS

» Illustrative example:

» Decision is made on x»

» Output value is either
1 or 0 as some f(x1, x)
that depends on the
values of wq, wo and 6.

[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958.

o
A.Bevan ‘an_‘l Queen Mary

University of London
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PERCEPTRONS 1 particle physics we often use machine

learning to suppress background. Here
y=1 corresponds to signal and y=0
w1 =0 corresponds to background.

» Illustrative example:

» Decision is made on x»

» Output value is either
1 or 0 as some f(xq, x2)
that depends on the
values of wq, wo and 6.

L
evan R
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. . L Eﬁﬁﬁﬂnﬁﬂary



. 37‘\

v
-
-

PRACTICAL MACHINE LEARNING: INTRODUCTORY NNS 11

PERCEPTRONS

» lllustrative examples:

0 = 0 =0 0 =0.5

' Shift decision plane
away from origin |

| Rotate decision
plane in (x1, x2)

Baseline for comparison,
decision only on value of x; |

— __

[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. University of London
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PERCEPTRONS

» Illustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the

perceptron is to give an output (value = 1) or not (value
= 0).

» We can generalise the problem to N quantities as

N
1—=1
= f(w" z +0)

evan \‘ 'I
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958.  Bevan O Queen Mary
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PERCEPTRONS

» Illustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the

perceptron is to give an output (value = 1) or not (value
= 0).

» We can generalise the problem to N quantities as

| The argument is {
justthe same |
functional form {
of Fisher's |
discriminant.

N
y=7F ZwixiJrH
i=1

= f(w z +0)

L
evan \‘ 'I
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A.Bevan W Queen Mary

University of London
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PERCEPTRONS

» The problem of determining the weights remains (we will
discuss optimisation later on).

» For now assume that we can use some heuristic to choose
weights that are deemed to be “optimal” for the task of
providing a response given some input data example.

evan \‘ 'I
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958.  Bevan O Queen Mary

rsity of London
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ACTIVATION FUNCTIONS

» The binary activation function of Rosenblatt is just one
type of activation function.

» This gives an all or nothing response.

» It can be useful to provide an output that is continuous
between these two extremes.

» For that we require additional forms of activation
function.

‘*Qs’ Queen Mary

UUUUUUUUU y of London
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ACTIVATION FUNCTIONS

» TensorFlow has the following activation functions (tf .nn.ACTIVATIONFUNCTION)

>

>

>

>

relu (covered here)
leaky_relu (covered here)
relué

crelu

elu

selu

softplus

softsign

dropout

bias_add

sigmoid (covered here)

tanh (covered here)

16

L
A.Bevan Q_@l Queeﬂ |\/|al’y

University of London
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ACTIVATION FUNCTIONS: LOGISTIC (OR SIGMOID)

» A common activation function used in neural networks:

1
1+ 6wT:c—|—0

1
1+ elwiz1twaza+0)

nnnnnnnnnnnnnnnnnn
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ACTIVATION FUNCTIONS: LOGISTIC (OR SIGMOID) s

» A common activation function used in neural networks:

| rotate "decision
boundary” in (x1, x2)

— =

TTT— ey

il
]l

| Baseline for comparison,

decision only on value of x2 |

. _

oooooooooooooooo
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ACTIVATION FUNCTIONS: HYPERBOLIC TANGENT

» A common activation function used in neural networks:

y = tanh(w' = + 0)
= tanh(wix1 + woxs + 6)

(Often used with 6 = 0)

nnnnnnnnnnnnnnnnnn
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ACTIVATION FUNCTIONS: HYPERBOLIC TANGENT tenb(wra: + woa: + )

» A common activation function used in neural networks:

1.00
0.95
1.0 y0.90
0.85
0.80

W1—1
wy =0 wo =1 wo = 1

 Offset (vertically
zero using ©

rotate “decision
boundary” in (x1, x2

===

{ Baseline for comparison, |
decision only on value of x; |

_

a.Bevan WQ Queen Mary
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ACTIVATION FUNCTIONS: RELU

» The Rectified Linear Unit activation function is commonly
used for CNNs. This is given by a conditional: 1

» f(x<0)y=0 /

0 X

» otherwisey = x

nnnnnnnnnnnnnnnnnn
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ACTIVATION FUNCTIONS: RELU

» The Rectified Linear Unit activation function is commonly
used for CNNs. This is given by a conditional: |

>

» f(x<0)y=0

» otherwisey = x

wi=1wy=0 wi=1 wy=1 wi=1,wy,=0.5

Importance of features in the perceptron still h
P . . P . P A. Bevan \E;Q‘sl Queeﬂ Mary
depend on weights as illustrated in these plots. Univesity of London
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ACTIVATION FUNCTIONS: PRELU VARIANT

» The RelU activation function can be modified to avoid gradient singularities.

A

» This is the PReLU or Leaky RelLU activation function y

» If (x < 0)y=a*x

» otherwise y = x X

» Collectively we can write the (P)ReLU activation function as

f(z) = max(0,x) + amin(0, x)

» Can be used effectively for need CNNs (more than 8 convolution layers),
whereas the RelLU activation function can have convergence issues for such a
configuration!2l,

» If ais small (0.01) it is referred to as a leaky ReLU function!'l. The default

implementation in TensorFlow has a=0.2[3l.

[ Maas, Hannun, Ng, ICML201 3.
[21 He, Zhang, Ren and Sun, arXiv:1502.01852 A

, , : A.B YO Queen Mar
[31 See https://github.com/tensorflow/tensorflow/blob/r1.8/tensorflow/python/ops/nn_ops.py wven WO gversityofLondon y



https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852
https://github.com/tensorflow/tensorflow/blob/r1.8/tensorflow/python/ops/nn_ops.py
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ACTIVATION FUNCTIONS: RELU

» Performs better than a sigmoid for a number of
applicationsl1l.

» Weights for a relu are typically initialised with a truncated
normal, OK for shallow CNNs, but there are convergence
issues with deep CNNs when using this initialisation
approachlil,

initial = tf.truncated normal(shape, stddev=0.1)

» Other initialisation schemes have been proposed to avoid
this issue for deep CNNs (more than 8 conv layers) as

discussed in Ref [2].

[ Maas, Hannun, Ng, ICML201 3. n Y.y Queen Mary
21 He, Zhang, Ren and Sun, arXiv:1502.01852 ’ == Gversity of Lonton
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ACTIVATION FUNCTIONS: RELU

» N.B. Gradient descent optimisation algorithms will not
change the weights for an activation function if the initial
weight is set to zero.

» This is why a truncated normal is used for initialisation,
rather than a Gaussian that has xeg[-o0, o].

y y
0.5 r 0.5 r

0.4+ 0.4}

0.3f

[ Maas, Hannun, Ng, ICML201 3. o n \.@I Queen Mary
21 He, Zhang, Ren and Sun, arXiv:1502.01852 ' == Gversity of Lonton



https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
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ACTIVATION FUNCTIONS: RELU

» N.B. Gradient descent optimisation algorithms will not
change the weights for an activation function if the initial
weight is set to zero.

» This is why a truncated normal is used for initialisation,

rather than a Gaussian that has xg[-oo, oo]. TensorFlow default
parameters for the
05y 0.5 truncated normal are:
_ _ u=0.0

0.4+ 0.4}

oc=1.0

0.3f
0.2}

0.1F

[ Maas, Hannun, Ng, ICML201 3. o n \@I Queen Mary
21 He, Zhang, Ren and Sun, arXiv:1502.01852 ' == Gversity of Lonton
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ACTIVATION FUNCTIONS: DATA PREPARATION

» Input features are arbitrary; whereas activation functions have a
standardised input domain of [-1, 1] or [0, 1].

» Limits the range with which we have to adjust hyper-
parameters to find an optimal solution.

» Avoids large or small hyper-parameters.

» Other algorithms have more stringent requirements for data-
preprocessing when being fed into them.

» All these points indicate that we need to prepare data
appropriately before feeding it into a perceptron, and
hence network.

o
A gevan QW Queen Mary

University of London
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ACTIVATION FUNCTIONS: DATA PREPARATION

» Input features are arbitrary; whereas activation functions have a standardised input domain
of [-1,1] or [0, 1].

» We can map our input feature space onto a standardised domain that matches some
range that matches that of the activation function.

» Saves work for the optimiser in determining hyper-parameters.

» Standardises weights to avoid numerical inaccuracies; and set common starting weights.

|
|

| » having an energy or momentum measured in units of 1012 eV, would require weights|
.‘ﬁ O(10-'2) to obtain an O(1) result for wix;.

|

|

“ » Mapping eV —TeV would translate 1012 eV +— 1TeV, and allow for O(1) weights i
leading to an O(1) result for wix;. |
» Comparing weights for features that are standardised allows the user to develop an
intuition as to what the corresponding activation function will look like.

e

&
A.Bevan WO Queen Mary

niversity of London

(=
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ACTIVATION FUNCTIONS: DATA PREPARATION

» A good paper to read on data preparation is [1]. This includes the
following suggestions:

» Standardising input features onto [-1, 1] results in faster optimisation
using gradient descent algorithms.

» Shift the features to have a mean value of zero.

» Itis also possible to speed up optimisation by de-correlating input
variables’.

» Having done this one can also scale the features to have a similar
variance.

= = ———— = e —— ——— ——

— e = =

' 1Decorrelation of features is not essential assuming a sufficiently general optimisation algorithm is being used. The ‘
‘rationale is that in general if one can decorrelate features then we just have to minimise the cost as a function of
| weights for one feature at a time, rather than being concerned about the dependence of weights on more than one

|

feature. So this is a choice made to simplify the minimisation process, and in to speed up that process.

L S — ——

—
[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 a.Bevan ¥Q Queen Mary

University of London
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ACTIVATION FUNCTIONS: DATA PREPARATION

1. Shift the distribution to have a zero mean

)y e.g.
2. Decorrelate input features
A ® A 3. Scale to match covariance of features.
.’.'0 Mean
. .
0e0 Cancellation
N
> >
KL-
Expansion
A A
Covariance
Equalization
® o . : o

B
[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 (Fig.3)  A.Bevan %l Queen Mary

University of London
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ARTIFICIAL NEURAL NETWORKS (ANNs)

» A single perceptron can be thought of as defining a

hyperplane that separates the input feature space into two
regions.

A binary threshold activation function is
an equivalent algorithm to cutting on a
fisher discriminant to distinguish
between types of training example.

F=wlz+7

The only real difference is the heuristic
used to determine the weights.

L
A.Bevan \G‘Q_sl Queen |\/|al’y

University of London
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ARTIFICIAL NEURAL NETWORKS (ANNs)

» A single perceptron can be thought of as defining a hyperplane that separates the
input feature space into two regions.

» This is a literal illustration for the binary threshold perceptron.

» The other perceptrons discussed have a gradual transition from one region to
the other.

» We can combine perceptrons to impose multiple hyperplanes on the input feature
space to divide the data into different regions.

» Such a system is an artificial neural network. There are various forms of ANNs; in
HEP this is usually synonymous with a multi-layer perceptron (MLP).

» An MLP has multiple layers of perceptrons; the outputs of the first layer of
perceptrons are fed into a subsequent layer, and so on. Ultimately the
responses of the final layer are brought together to compute an overall value
for the network response.

A.Bevan \-@Qsl Queen Mary

rsity of London



PRACTICAL MACHINE LEARNING: INTRODUCTORY NNS 33
MULTILAYER PERCEPTRONS
» lllustrative example: Input data example: z = {z1, 22, 23,...,2,}

)

/

=< ——/
et

ARNZe NI
K

/

Input layer of n perceptrons;
one for each dimension of the
input feature space

nnnnnnnnnnnnnnnnnn
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MULTILAYER PERCEPTRONS

34

» lllustrative example: Input data example: z = {z1, 292, 25,...,2,}

T

-

RN

?\

o

7\

/

Input layer of n perceptrons;
one for each dimension of the

input feature space

|

Hidden layer of some number
of perceptrons, M; at least one
for each dimension of the input
feature space.

L
A.Bevan \Q“Q_‘:;I Queeﬂ |\/|al’y

University of London
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MULTILAYER PERCEPTRONS

35

» lllustrative example: Input data example: z = {z1, 292, 25,...,2,}

T

-

RN

7

o

7\

|

Output layer of perceptrons;
one for each output type. In
this case the network has

/

Input layer of n perceptrons;
one for each dimension of the

input feature space

only one output.

|

Hidden layer of some number
of perceptrons, M; at least one

for each dimension of the input N
feature space. a-Bevan WY Queen Mary
University of London
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TRAINING

» Parameter tuning is referred to as training.

» A perceptron of the form f(wTx+0) has n+1=dim(x)+1 hyper-
parameters to be tuned.

» The input layer of perceptrons in an MLP has n(n+1) hyper
parameters to be tuned.

» ...and so on.
» We tune parameters based on some metric! called the loss function.

» We optimise the hyper-parameters of a network in order to minimise
the loss function for an ensemble of data.

» The process is discussed in more detail under the heading Optimisation.

1Also called a figure of merit. The general term when applied to machine learning is the loss function. A. Bevan E,Qsl Queen Mary
rsity of London
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Neural networks are built on perceptrons:

Inspired by desire to understand the biological function of the
eye and how we perceive based on visual input.

The output threshold of a perceptron can be all or nothing, or
be continuous between those extremes.

Artificial neural networks are constructed from perceptrons.

Perceptron/network weights need to be determined via some
optimisation process, called training.

... This leads us on to issues related to training and toward deep

neural networks.

&
%O Queen Mary
Uni

versity of London
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SUGGESTED READING

» The suggestions made here are for some of the standard text books on the subject. These require a higher level of math
than we use in this course, but may have less emphasis on the practical application of the methods we discuss here as a
consequence.

» MacKay: Information theory, inference and learning algorithms
» Chapter: V
» C. Bishop: Neural Networks for Pattern Recognition
» Chapters: 3 and 4
» C. Bishop: Pattern Recognition and Machine Learning
» Chapter: 5
» T. Hastie, R. Tibshirani, J. Friedman, Elements of statistical learning

» Chapter: 11

» In addition to books, you may find interesting articles posted on the preprint archive: https://arxiv.org. There are several
useful categories as part of the Computing Research Repository (CoRR) related to this course including Artificial
Intelligence. Note that these are research papers, so again they will generally have a strong mathematical content.

L
A.Bevan \Q‘Q_sl Queen |\/|al’y

University of London
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