

DR ADRIAN BEVAN

PRACTICAL MACHINE LEARNING

INTRODUCTORY NEURAL NETWORKS (NNs)

LECTURE PLAN

- Perceptrons
- Activation functions
- Artificial Neural Network
- Multilayer Perceptrons
- Training
- Summary

QMUL Summer School:

https://www.qmul.ac.uk/summer-school/

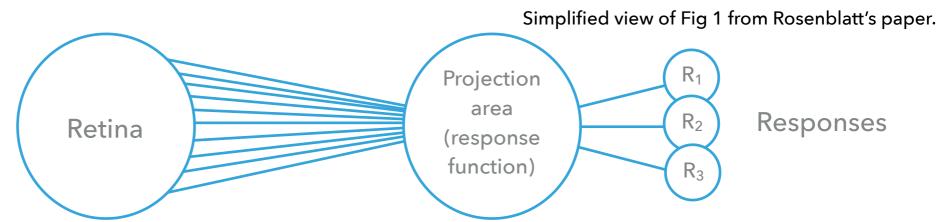
Practical Machine Learning QMplus Page:

https://qmplus.qmul.ac.uk/course/view.php?id=10006

Rosenblatt^[1] coined the concept of a perceptron as a probabilistic model for information storage and organisation in the brain.

Origins in trying to understand how information from the retina is

processed.



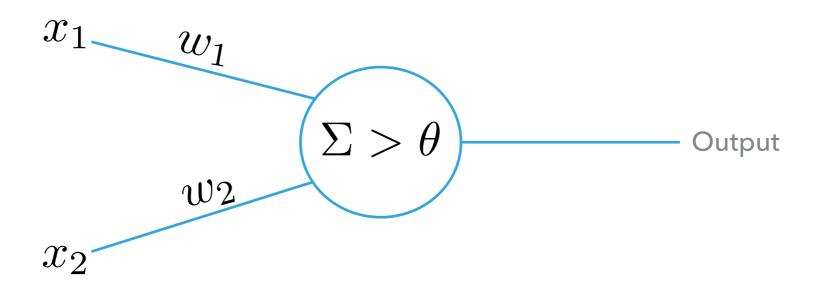
- Start with inputs from different cells.
- Process those data: "if the sum of excitatory or inhibitory impulse intensities is either equal to or greater than the threshold (θ) ... then the A unit fires".
- This is an all or nothing response-based system.

- This picture can be generalised as follows:
 - Take some number, n, of input features
 - Compute the sum of each of the features multiplied by some factor assigned to it to indicate the importance of that information.
 - Compare the sum against some reference threshold.
 - > Give a positive output above some threshold.

- Illustrative example:
 - ▶ Consider a measurement of two quantities x_1 , and x_2 .
 - Based on these measurements we determine if the perceptron is to give an output (value = 1) or not (value = 0).

$$\begin{array}{ccc} w_1x_1 \\ + \\ w_2x_2 \end{array} = \left\{ \begin{array}{c} \mathbf{0} \\ \mathbf{1} \end{array} \right.$$

- Illustrative example:
 - ▶ Consider a measurement of two quantities x_1 , and x_2 .
 - Based on these measurements we determine if the perceptron is to give an output (value = 1) or not (value = 0).



- Illustrative example:
 - \triangleright Consider a measurement of two quantities x_1 , and x_2 .
 - Based on these measurements we determine if the perceptron is to give an output (value = 1) or not (value = 0).

If
$$w_1 x_1 + w_2 x_2 > \theta$$

Output
$$= 1$$

else

Output = 0

- Illustrative example:
 - \triangleright Consider a measurement of two quantities x_1 , and x_2 .
 - Based on these measurements we determine if the perceptron is to give an output (value = 1) or not (value = 0).

If
$$w_1 x_1 + w_2 x_2 > \theta$$

Output = 1

else

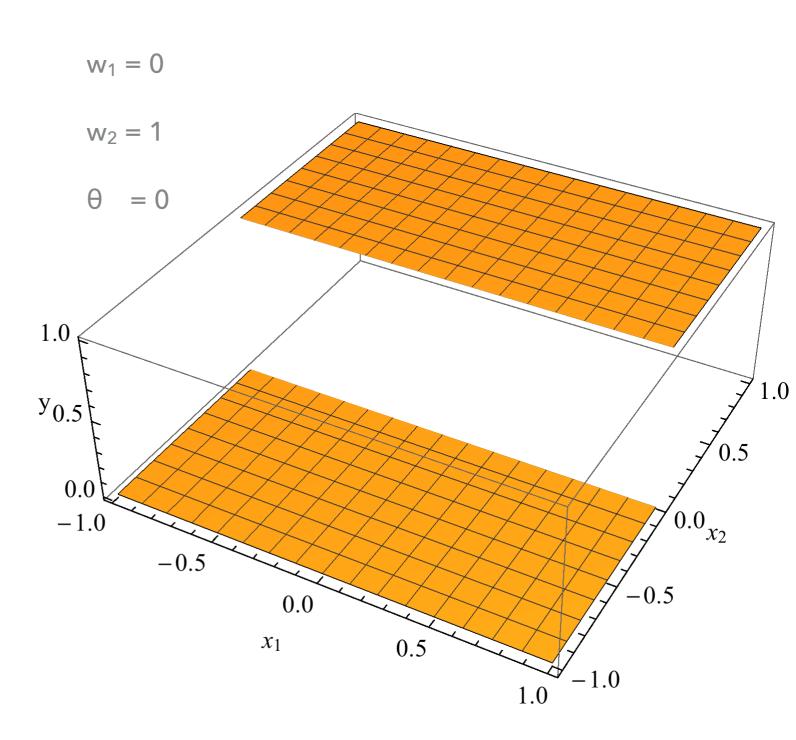
Output = 0

This is called a binary activation function

Illustrative example:

Decision is made on x₂

• Output value is either 1 or 0 as some $f(x_1, x_2)$ that depends on the values of w_1 , w_2 and θ .



 $w_1 = 0$

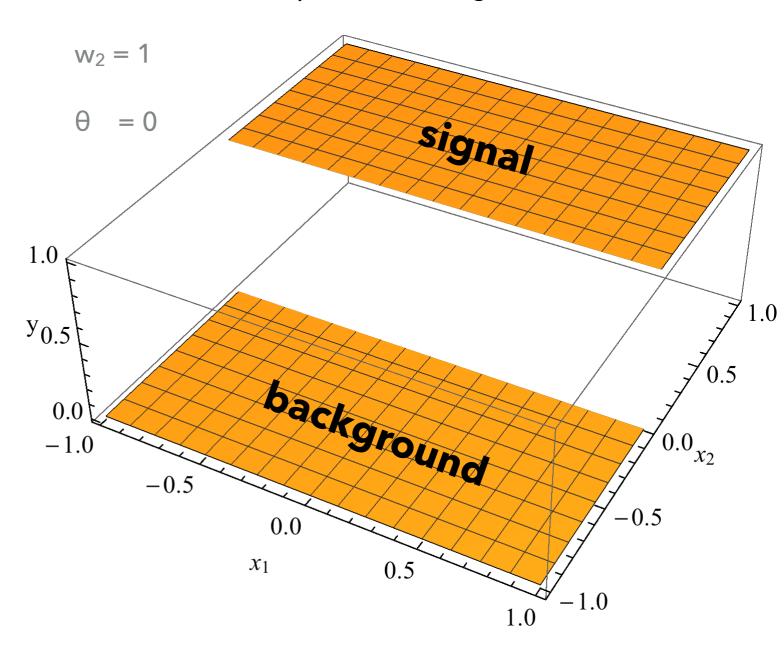
PERCEPTRONS

Illustrative example:

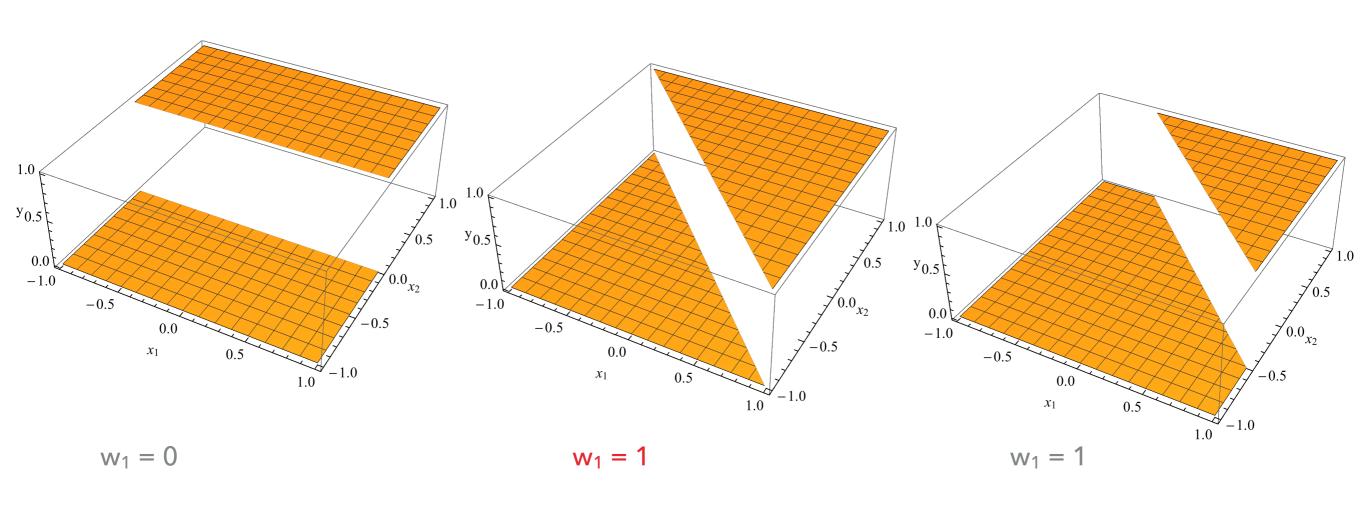
Decision is made on x₂

• Output value is either 1 or 0 as some $f(x_1, x_2)$ that depends on the values of w_1 , w_2 and θ .

In particle physics we often use machine learning to suppress background. Here y=1 corresponds to signal and y=0 corresponds to background.



Illustrative examples:



$$w_2 = 1$$

$$\theta = 0$$

Baseline for comparison, decision only on value of x_2

$$w_2 = 1$$

$$\theta = 0$$

Rotate decision plane in (x_1, x_2)

$$w_2 = 1$$

$$\theta = 0.5$$

Shift decision plane away from origin

- Illustrative example:
 - ▶ Consider a measurement of two quantities x_1 , and x_2 .
 - Based on these measurements we determine if the perceptron is to give an output (value = 1) or not (value = 0).
- We can generalise the problem to N quantities as

$$y = f\left(\sum_{i=1}^{N} w_i x_i + \theta\right)$$
$$= f(w^T x + \theta)$$

- Illustrative example:
 - \blacktriangleright Consider a measurement of two quantities x_1 , and x_2 .
 - Based on these measurements we determine if the perceptron is to give an output (value = 1) or not (value = 0).
- We can generalise the problem to N quantities as

$$y=f\left(\sum_{i=1}^{N}w_{i}x_{i}+ heta
ight)$$
 The argument is just the same functional form of Fisher's discriminant.

- The problem of determining the weights remains (we will discuss optimisation later on).
- For now assume that we can use some heuristic to choose weights that are deemed to be "optimal" for the task of providing a response given some input data example.

ACTIVATION FUNCTIONS

- The binary activation function of Rosenblatt is just one type of activation function.
 - This gives an all or nothing response.

- It can be useful to provide an output that is continuous between these two extremes.
 - For that we require additional forms of activation function.

ACTIVATION FUNCTIONS

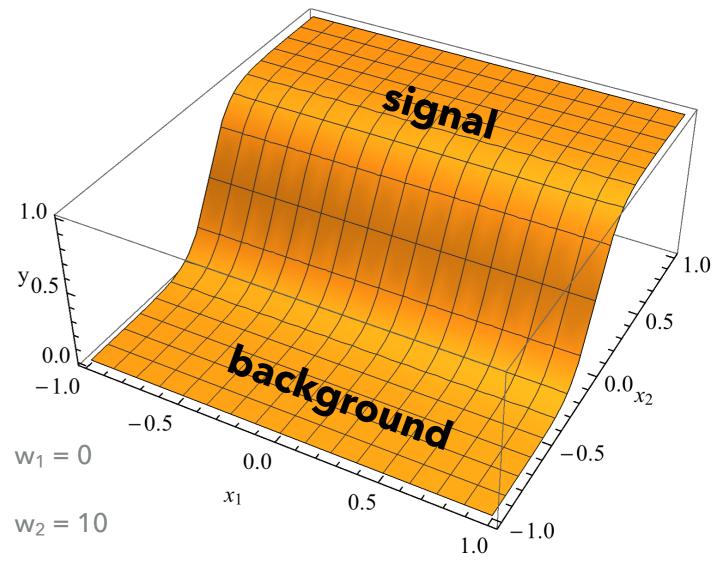
- ▶ TensorFlow has the following activation functions (tf.nn.ACTIVATIONFUNCTION)
 - relu (covered here)
 - leaky_relu (covered here)
 - relu6
 - crelu
 - elu
 - selu
 - softplus
 - softsign
 - dropout
 - bias_add
 - sigmoid (covered here)
 - tanh (covered here)

ACTIVATION FUNCTIONS: LOGISTIC (OR SIGMOID)

A common activation function used in neural networks:

$$y = \frac{1}{1 + e^{w^T x + \theta}}$$

$$= \frac{1}{1 + e^{(w_1 x_1 + w_2 x_2 + \theta)}}$$

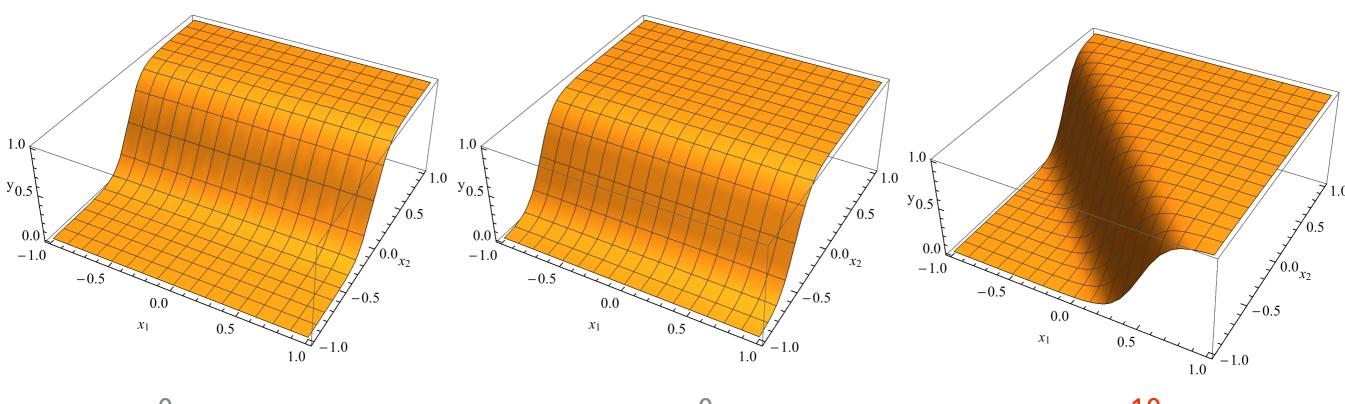


 $\theta = 0$

ACTIVATION FUNCTIONS: LOGISTIC (OR SIGMOID)

$$\frac{1}{1 + e^{(w_1 x_1 + w_2 x_2 + \theta)}}$$

A common activation function used in neural networks:



$$w_1 = 0$$

$$w_2 = 10$$

$$\theta = 0$$

Baseline for comparison, decision only on value of x_2

$$w_1 = 0$$

$$w_2 = 10$$

$$\theta = -5$$

Offset from zero using θ

$$w_1 = 10$$

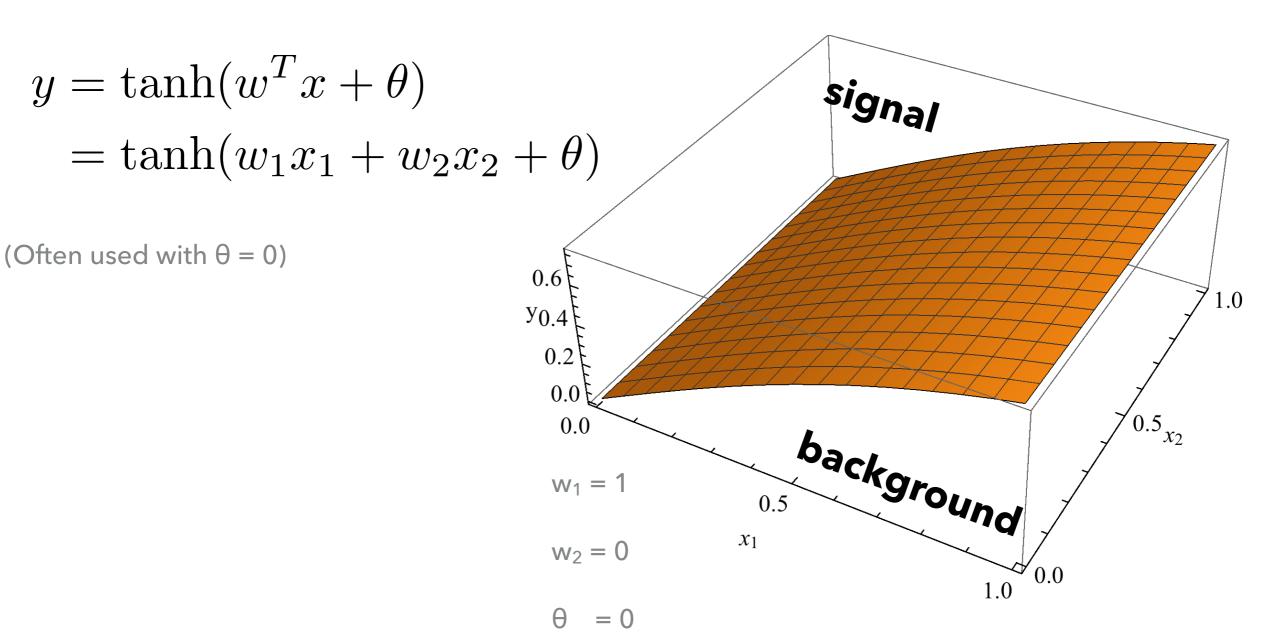
$$w_2 = 10$$

$$\theta = -5$$

rotate "decision boundary" in (x_1, x_2)

ACTIVATION FUNCTIONS: HYPERBOLIC TANGENT

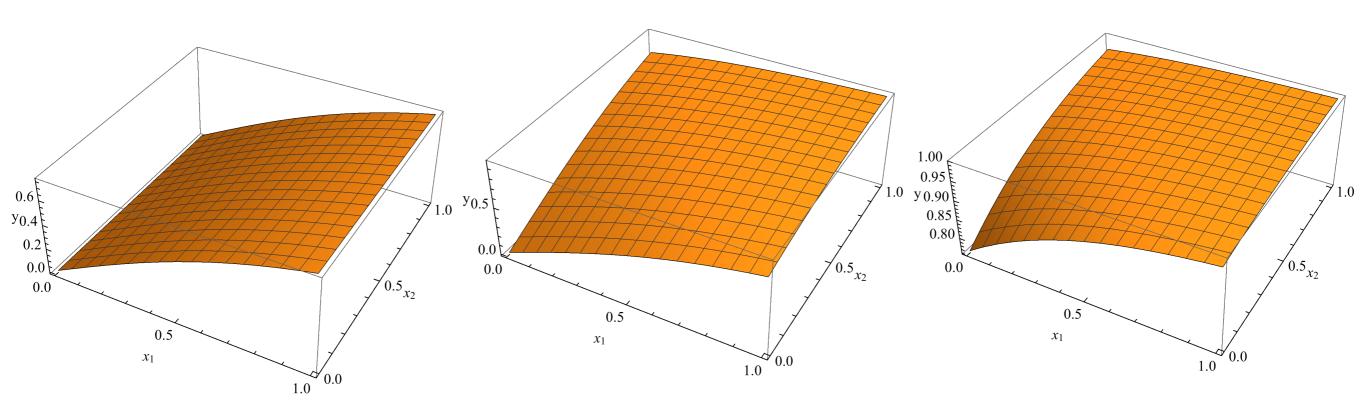
A common activation function used in neural networks:



ACTIVATION FUNCTIONS: HYPERBOLIC TANGENT

 $\tanh(w_1x_1 + w_2x_2 + \theta)$

A common activation function used in neural networks:



$$w_1 = 1$$

$$w_2 = 0$$

$$\theta = 0$$

Baseline for comparison, decision only on value of x_1

$$w_1 = 1$$

$$w_2 = 1$$

$$\theta = 0$$

rotate "decision boundary" in (x_1, x_2)

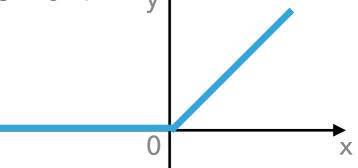
$$w_1 = 1$$

$$w_2 = 1$$

$$\theta = -1$$

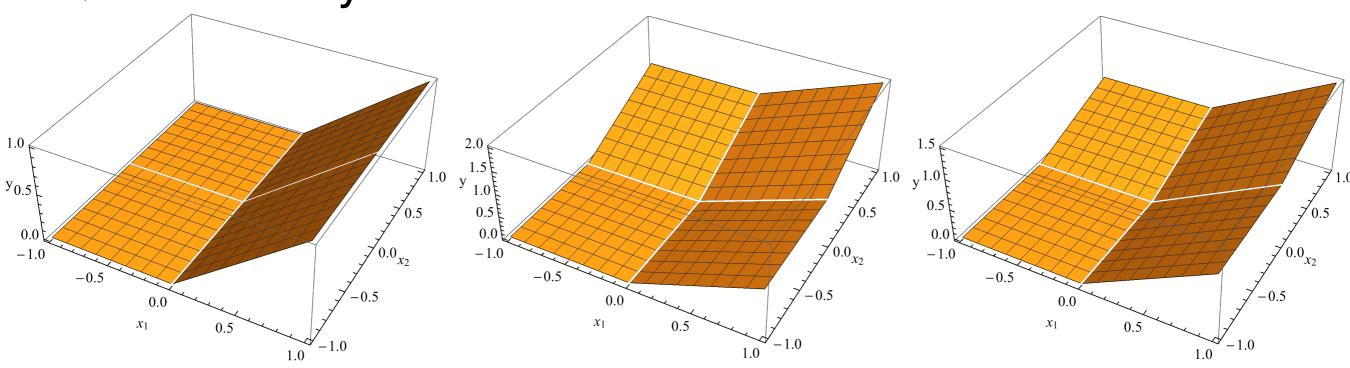
Offset (vertically) from zero using θ

- The Rectified Linear Unit activation function is commonly used for CNNs. This is given by a conditional: √↑
 - If (x < 0) y = 0
 - \rightarrow otherwise y = x



- - If (x < 0) y = 0

 \rightarrow otherwise y = x



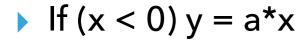
$$w_1 = 1, w_2 = 0$$

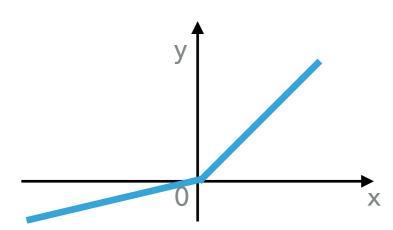
$$w_1 = 1, w_2 = 1$$

 $w_1 = 1, w_2 = 0.5$

ACTIVATION FUNCTIONS: PRELU VARIANT

- The ReLU activation function can be modified to avoid gradient singularities.
- ▶ This is the **PReLU** or **Leaky ReLU** activation function





Collectively we can write the (P)ReLU activation function as

$$f(x) = \max(0, x) + a\min(0, x)$$

- ▶ Can be used effectively for need CNNs (more than 8 convolution layers), whereas the ReLU activation function can have convergence issues for such a configuration^[2].
- If a is small (0.01) it is referred to as a leaky ReLU function^[1]. The default implementation in TensorFlow has $a=0.2^{[3]}$.

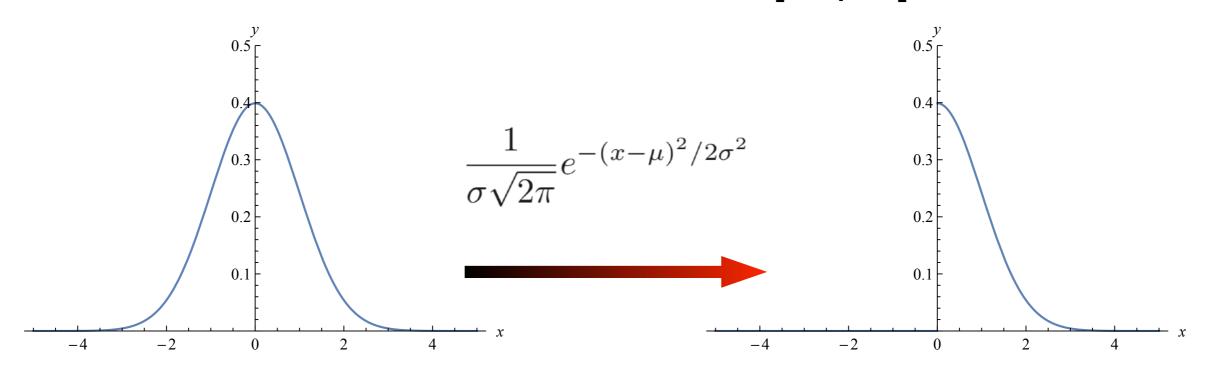
^[1] Maas, Hannun, Ng, ICML2013.

- Performs better than a sigmoid for a number of applications^[1].
 - Weights for a relu are typically initialised with a truncated normal, OK for shallow CNNs, but there are convergence issues with deep CNNs when using this initialisation approach^[1].

```
initial = tf.truncated_normal(shape, stddev=0.1)
```

Other initialisation schemes have been proposed to avoid this issue for deep CNNs (more than 8 conv layers) as discussed in Ref [2].

- N.B. Gradient descent optimisation algorithms will not change the weights for an activation function if the initial weight is set to zero.
 - ▶ This is why a truncated normal is used for initialisation, rather than a Gaussian that has $x \in [-\infty, \infty]$.

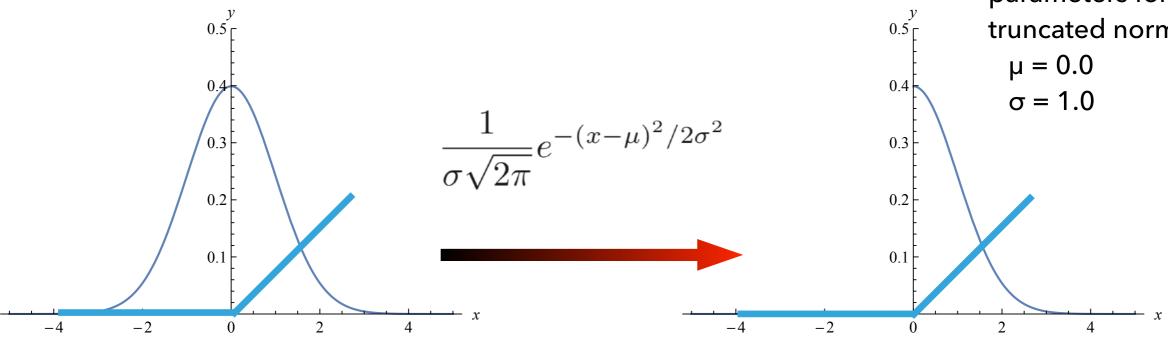


N.B. Gradient descent optimisation algorithms will not change the weights for an activation function if the initial weight is set to zero.

▶ This is why a truncated normal is used for initialisation,

rather than a Gaussian that has $x \in [-\infty, \infty]$.

TensorFlow default parameters for the truncated normal are:



- Input features are arbitrary; whereas activation functions have a standardised input domain of [-1, 1] or [0, 1].
 - Limits the range with which we have to adjust hyperparameters to find an optimal solution.
 - Avoids large or small hyper-parameters.
 - Other algorithms have more stringent requirements for datapreprocessing when being fed into them.
 - All these points indicate that we need to prepare data appropriately before feeding it into a perceptron, and hence network.

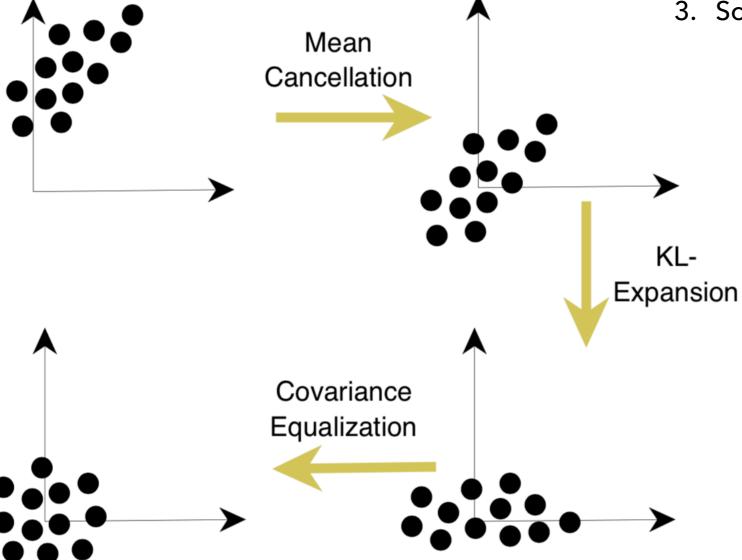
- Input features are arbitrary; whereas activation functions have a standardised input domain of [-1, 1] or [0, 1].
 - We can map our input feature space onto a standardised domain that matches some range that matches that of the activation function.
 - Saves work for the optimiser in determining hyper-parameters.
 - > Standardises weights to avoid numerical inaccuracies; and set common starting weights.
 - e.g.
 - having an energy or momentum measured in units of 10^{12} eV, would require weights $O(10^{-12})$ to obtain an O(1) result for $w_i x_i$.
 - ▶ Mapping eV \mapsto TeV would translate 10^{12} eV \mapsto 1TeV, and allow for O(1) weights leading to an O(1) result for $w_i x_i$.
 - Comparing weights for features that are standardised allows the user to develop an intuition as to what the corresponding activation function will look like.

- A good paper to read on data preparation is [1]. This includes the following suggestions:
 - Standardising input features onto [-1, 1] results in faster optimisation using gradient descent algorithms.
 - Shift the features to have a mean value of zero.
 - It is also possible to speed up optimisation by de-correlating input variables¹.
 - Having done this one can also scale the features to have a similar variance.

¹Decorrelation of features is not essential assuming a sufficiently general optimisation algorithm is being used. The rationale is that in general if one can decorrelate features then we just have to minimise the cost as a function of weights for one feature at a time, rather than being concerned about the dependence of weights on more than one feature. So this is a choice made to simplify the minimisation process, and in to speed up that process.

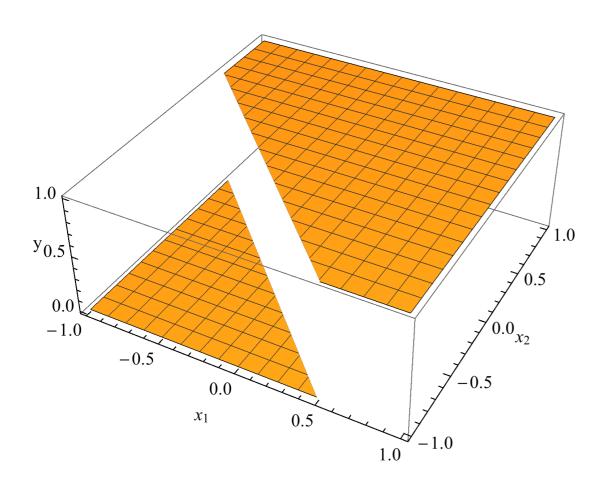
e.g.

- 1. Shift the distribution to have a zero mean
- 2. Decorrelate input features
- 3. Scale to match covariance of features.



ARTIFICIAL NEURAL NETWORKS (ANNs)

A single perceptron can be thought of as defining a hyperplane that separates the input feature space into two regions.



A binary threshold activation function is an equivalent algorithm to cutting on a fisher discriminant to distinguish between types of training example.

$$\mathcal{F} = w^T x + \beta$$

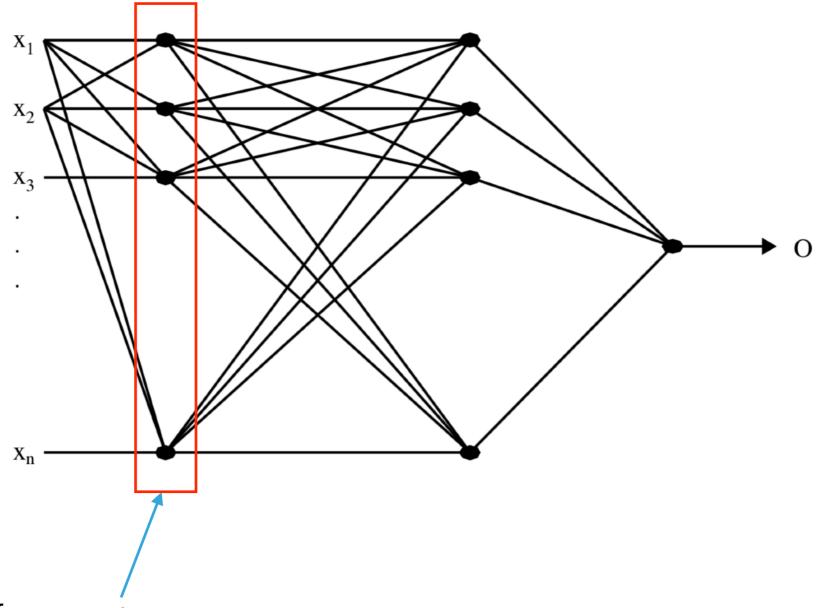
The only real difference is the heuristic used to determine the weights.

ARTIFICIAL NEURAL NETWORKS (ANNs)

- A single perceptron can be thought of as defining a hyperplane that separates the input feature space into two regions.
 - This is a literal illustration for the binary threshold perceptron.
 - The other perceptrons discussed have a gradual transition from one region to the other.
- We can combine perceptrons to impose multiple hyperplanes on the input feature space to divide the data into different regions.
- Such a system is an artificial neural network. There are various forms of ANNs; in HEP this is usually synonymous with a multi-layer perceptron (MLP).
 - An MLP has multiple layers of perceptrons; the outputs of the first layer of perceptrons are fed into a subsequent layer, and so on. Ultimately the responses of the final layer are brought together to compute an overall value for the network response.

MULTILAYER PERCEPTRONS

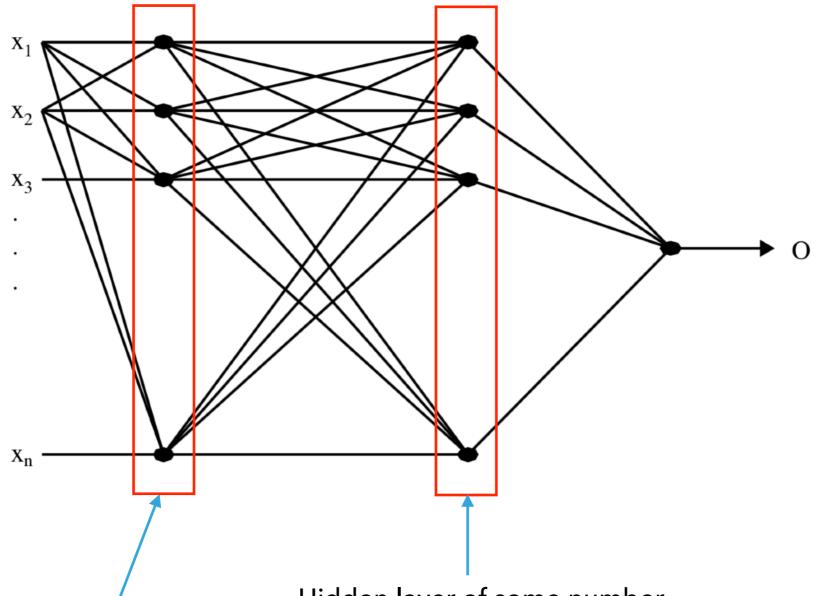
Illustrative example: Input data example: $x = \{x_1, x_2, x_3, \dots, x_n\}$



Input layer of n perceptrons; one for each dimension of the input feature space

MULTILAYER PERCEPTRONS

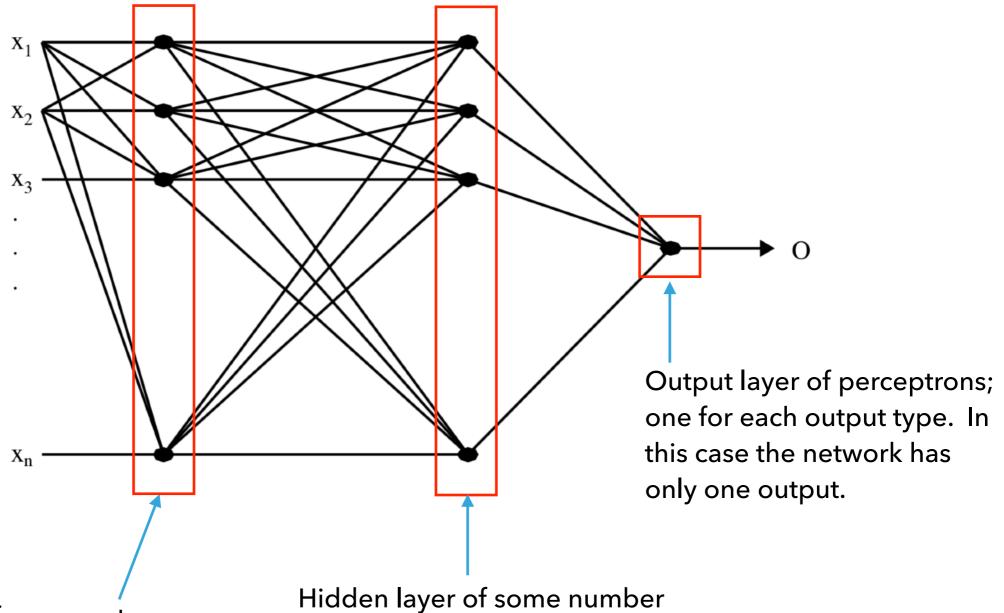
Illustrative example: Input data example: $x = \{x_1, x_2, x_3, \dots, x_n\}$



Input layer of n perceptrons; one for each dimension of the input feature space Hidden layer of some number of perceptrons, M; at least one for each dimension of the input feature space.

MULTILAYER PERCEPTRONS

Illustrative example: Input data example: $x = \{x_1, x_2, x_3, \dots, x_n\}$



Input layer of n perceptrons; one for each dimension of the input feature space Hidden layer of some number of perceptrons, M; at least one for each dimension of the input feature space.

TRAINING

- Parameter tuning is referred to as training.
 - A perceptron of the form $f(w^Tx+\theta)$ has n+1=dim(x)+1 hyperparameters to be tuned.
 - The input layer of perceptrons in an MLP has n(n+1) hyper parameters to be tuned.
 - ... and so on.
- We tune parameters based on some metric¹ called the loss function.
- We optimise the hyper-parameters of a network in order to minimise the loss function for an ensemble of data.
- > The process is discussed in more detail under the heading Optimisation.

SUMMARY

- Neural networks are built on perceptrons:
 - Inspired by desire to understand the biological function of the eye and how we perceive based on visual input.
 - The output threshold of a perceptron can be all or nothing, or be continuous between those extremes.
- Artificial neural networks are constructed from perceptrons.
- Perceptron/network weights need to be determined via some optimisation process, called training.
- ... This leads us on to issues related to training and toward deep neural networks.

SUGGESTED READING

- The suggestions made here are for some of the standard text books on the subject. These require a higher level of math than we use in this course, but may have less emphasis on the practical application of the methods we discuss here as a consequence.
- MacKay: Information theory, inference and learning algorithms
 - Chapter: V
- C. Bishop: Neural Networks for Pattern Recognition
 - ▶ Chapters: 3 and 4
- C. Bishop: Pattern Recognition and Machine Learning
 - Chapter: 5
- T. Hastie, R. Tibshirani, J. Friedman, Elements of statistical learning
 - Chapter: 11
- In addition to books, you may find interesting articles posted on the preprint archive: https://arxiv.org. There are several useful categories as part of the Computing Research Repository (CORR) related to this course including Artificial Intelligence. Note that these are research papers, so again they will generally have a strong mathematical content.