‘*Qs’ Queen Mary

rsity of London

DR ADRIAN BEVAN

PRACTICAL MACHINE LEARNING

INTRODUCTORY TENSORFLOW

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 2

LECTURE PLAN These slides focus on the use of

| tensor flow data types and

) Introduction | operations in order to ensure
that there is a common

g Graphs background to build on for the
» Shapes remaining weeks.

» constants, variables and placeholders
' Once we have covered these

) Ops basics we will move on to
» Mathematical ops machine learning with

» element wise operations TensorFlow.
» metrics computed from ensembles of data
» matrix operations

Random numbers

Generating data

Summary

Suggested Reading

= —= — —_—-—— ——— p——

https://www.gmul.ac.uk/summer-school/

QMUL Summer School:
 Practical Machine Learning QMplus Page: https://gmplus.gmul.ac.uk/course/view.php?id=10006 |

| —

L
A.Bevan \ééQ_sl Queeﬂ |\/|al’y

University of London

https://www.qmul.ac.uk/summer-school/
https://qmplus.qmul.ac.uk/course/view.php?id=10006

&_’n
PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 3

INTRODUCTION

» In TensorFlow the user sets up a graph for a calculation.

» Then that graph is executed on an ensemble of data.

» This means that you have to think a bit differently about
how you approach a problem when you write code.

» This can take a bit of getting used to.

» We will use the following throughout

import tensorflow as tf

\Qsl Queen Mary

UUUUUUUUU y of London

s
PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 4

INTRODUCTION

» For evaluation of some of the more advanced tensorflow scripts
we will work with, we also need to allow for the OpenMP library
to be loaded multiple times.

» This can be done by adding

import os

os.environ['KMP DUPLICATE LIB OK']='True'

» If we don’t do this, Spyder will stop evaluating scripts part way
through (when model training) without any error or warning. If
you use PyCharm you will get an error, and if you use a terminal,
then the script will execute without any problem (on a Mac).

o

A gevan QW Queen Mary

University of London

&)ﬂ.
PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 5

INTRODUCTION: GRAPHS

» Conceptually the graph is an implementation of the calculation that you wish
to perform, that is abstracted from the data that you wish to operate on.

» e.g. consider the operation of multiplying the number 3 by a scale factor of
S:

» y=5%*3.

» If we want to be able to define a rule to arbitrarily scale some number or an
ensemble of numbers by that scale factor, then we could write:

» y=5%x

» Here x is not specified, and we could interpret that as a scalar. We could also
consider x and y as a higher dimensional representation of data such as a
vector or tensor.

A.Bevan \-@Qsl Queen Mary

rsity of London

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 6

INTRODUCTION: GRAPHS
» Consider the following graphs:
. add
] y=a-+0b
. mul
N y=aXxb
truediv
; y =a/b
Sqrt

» The graphs for your scripts can be inspected using TensorBoard.

nnnnnnnnnnnnnnnnnn

P

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 7

I NTRU D U CTI 0 N D SHAP ES | ;I;engorlélow type—s depend on shape; th}s allows gra;hs t

.H be abstracted in such a way that is independent of the

| data representation.
» Scalar:
. Scalars, vectors matrices and tensors are loosely referred
» Asingle number. T = 3 | to as tensors for the purposes of model implementation.

» The rank of a scalaris 0.

» Vector: (1 \
» A 1D collection of numbers. p — g
» The rank of a vectoris 1. \ A)

y Matrix:

» A 2D collection of numbers.

Sy O = W

~ 0 DN =
O I~ W DN
-J O Ut i~

» The rank of a matrix is 2. \
» Tensor:

» A higher dimensional collection of numbers. e.g.aRank 3 tensor can be visualised by taking an NxM

matrix and allowing each element to become a vector of
» The rank of a tensor is =3. dimension P (so this would be a NxMxP tensor of rank 3).

o
https://www.tensorflow.org/programmers_guide/tensors a.Bevan WQl Queen Mary

University of London

https://www.tensorflow.org/programmers_guide/tensors

&)ﬁ.
PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 8

INTRODUCTION

» Tensor flow has its own types, operations (ops) and higher level
objects. These slides will focus mostly on the types and ops.

» We will encounter
» constants:
» Variables:
» placeholders:

» This is a placeholder for a tensor. We will use these with
feed_dict when training models.

» There are also SparseTensors (we won't use these, but they can help
implement efficient calculations for some problems).

https://www.tensorflow.org/programmers_guide/tensors A.Bevan \e,Qs’ Queen Mary

rsity of London

https://www.tensorflow.org/programmers_guide/tensors

P

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW) vars. py 9

INTRODUCTION: CONSTANTS |

» We can define constants of a given shape using
tf.constant(args):

» Using a list of values to create a constant tensor
b = tf.constant([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=tf.float32, name="b")

» NumPy arrays can also be used for this purpose.

X
C

» tensors can be created with a pre-defined shape (no
need for a NumPy array:

np.array([[1l, 2], [3, 4]], name="x")
tf.constant (x, name=“c")

d = tensor = tf.constant(-1.0, shape=[2, 2], name="d")

} a rg S value : A constant value (or list) of output type dtype .
dtype : The type of the elements of the resulting tensor.

shape : Optional dimensions of resulting tensor.

T
name : Optional name for the tensor. 4— HINT: assign names to help understand graph descrlptlons ﬂ

verify_shape : Boolean that enables verification of a shape of values

A.Bevan \c‘, o Ueen Mar
https://www.tensorflow.org/api_docs/python/tf/constant Q° Q ot

https://www.tensorflow.org/api_docs/python/tf/constant

» A tf Variable is created similarly with tf.variable(args)
tensorvVar = tf.variable([1l, 2, 3, 4, 5, 6, 7, 8, 9, 10], name="tensorVar")
» The structure of the tensor can be printed out, but graph

evaluation can not proceed without variable initialisation (see
later).

» Having created a variable you can change it using ops (see
later). For example:

tensorVar.assign(tensorVar + 1)
tensorVar.assign add(1)

both add 1.0 to the original value of the tensor elements.

» Args: see [1].

evan W)
[1] https://www.tensorflow.org/api_docs/python/tf/Variable A even W Queen Mary

rsity of London

https://www.tensorflow.org/api_docs/python/tf/Variable

These are tensors that need to be fed using feed_dict when being
evaluated and created using tf.placeholder (args)

e.g. consider a placeholder tensor for a 10x10 matrix with graph

=X.X
y xp = tf.placeholder(tf.float32, shape=(10, 10), name="xp")
y = tf.matmul (xp, XxXp)
rand array = np.random.rand(10, 10)
print(sess.run(y, feed dict={xp: rand array}))

Allows the user to evaluate a sub-set of of data examples during a
training cycle.

Shapes can be incomplete (e.g. don’t have to specify the number of
examples ahead of training a model)

dtype : The type of elements in the tensor to be fed.

a rgs: shape : The shape of the tensor to be fed (optional). If the shape is not specified, you can feed a tensor of any
shape.

name : A name for the operation (optional).
A Devdll ALY \xdeen Mar

https://www.tensorflow.org/api_docs/python/tf/placeholder ity of London

https://www.tensorflow.org/api_docs/python/tf/placeholder

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 12

INTRODUCTION: EVALUATION

» Having defined a graph, evaluation of that graph on data
is required. This can be done in one of several ways

» Using a session:

sess = tf.Session()
sess.run(tensor)

» One can specify a session as default:

sess = tf.Session()
with sess.as default():
tensor.eval ()

L
A.Bevan \Q‘Q_sl Queen |\/|al’y

University of London

&,‘.
PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 13

INTRODUCTION: EVALUATION

» Having defined a graph, evaluation of that graph on data
is required. This can be done in one of several ways

» Using a session with variables:

sess = tf.Session()

init = tf.global variables initializer()
sess.run(init)

sess.run(tensor)

» One can specify a session as default (with variables):

sess = tf.Session()
init = tf.global variables initializer()
sess.run(init)
with sess.as default():
tensor.eval ()

A.Bevan \aQsl Queen Mary

rsity of London

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 14

INTRODUCTION: EVALUATION

» Having defined a graph, evaluation of that graph on data
is required. This can be done in one of several ways

» Using a session with variables:

sess = tf.Session()
sess.run(tensor.initializer)
sess.run(tensor)

» One can specify a session as default (with variables):

sess = tf.Session()
with sess.as default():

sess.run(tensor.initializer)
tensor.eval ()

L
A.Bevan \GQ_sl Queen |V|al’y

University of London

P

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 15

INTRODUCTION: EVALUATION

» Having defined a graph, evaluation of that graph on data
is required. This can be done in one of several ways

hd —,—*_. 1 1 ~ — =
‘\

» Usinga_
J The steps involved in this process are:

M

' 1.Create the graph

» One ca iables):

2.Initialise the variables in the graph

3 Evaluate the graph

tensor. eval()

A.B L Q ueen I\/Iary
Uniwv:

sity of London

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 16

INTRODUCTION: EVALUATION

» If you try to use a variable that has not been initialised you
will get an error like the following

Traceback (most recent call last):
File "./vars.py", line 72, in <module>
print("tensorVar2 = ", sess.run(tensorVar2))
File "/Library/Python/2.7/site-packages/tensorflow/python/client/session.py", line 766, in run
run metadata ptr)
File "/Library/Python/2.7/site-packages/tensorflow/python/client/session.py", line 964, in run
feed dict string, options, run metadata)
File "/Library/Python/2.7/site-packages/tensorflow/python/client/session.py", line 1014, in do run
target list, options, run metadata)
File "/Library/Python/2.7/site-packages/tensorflow/python/client/session.py", line 1034, in do call
raise type(e)(node def, op, message)
tensorflow.python. framework.errors impl.FailedPreconditionError: Attempting to use uninitialized value tensorVar2
[[Node: send tensorVar2 0 = Send[T=DT INT32, client terminated=true, recv device="/job:localhost/replica:0/task:
0/cpu:0", send device="/job:localhost/replica:0/task:0/cpu:0", send device incarnation=-4751424724121413910,
tensor name="tensorVar2:0", device="/job:localhost/replica:0/task:0/cpu:0"](tensorVar2)]]

L
A.Bevan \Q‘Q_sl Queen |V|al’y

University of London

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 17

INTRODUCTION: EVALUATION

» If you try to use a variable that has not been initialised you
will get an error like the following

Where the problemis

Traceback (most recent call 1
File "./vars.py", line 72, In <module>
print("tensorVar2 = ", sess.run(tensorVar2))
File "/Library/Python/2.7/site-packages/tensorflow/python/client/session.py", line 766, in run
run metadata ptr)
File "/Library/Python/2.7/site-packages/tensorflow/python/client/session.py", line 964, in _run
feed dict string, options, run metadata)
File "/Library/Python/2.7/site-packages/tensorflow/python/client/session.py", line 1014, in do run
target list, options, run metadata)
File "/Library/Python/2.7/site-packages/tensorflow/python/client/session.py", line 1034, in do call
raise type(e)(node def, op, message)
tensorflow.python. framework.errors impl.FailedPreconditionError: Attempting to use uninitialized value tensorVar2
[[Node: send tensorVar2 0 = Send[T=DT INT32, client t nated=true, recv_device="/job:localhost/replica:0/task:
0/cpu:0", send device="/job:localhost/replica:0/task:0/c ", send device incarnation=-4751424724121413910,
tensor name="tensorVar2:0", device="/job:localhost/r ica:0/task:0/cpu:0"](tensorvar2)]]

?

name of the tensor. If you don't specify this value when
declaring your tensor you will get a default name assigned
e.g. Variable or Variable_N. This makes debugging your
scripts harder work (and this is one of the reasons why |
recommend naming your tensors).

What the problemis

L
A.Bevan \Q“Q_‘:;I Queeﬂ |\/|al’y

University of London

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW

opsS.py, OpsS2.py | Usestensorflow ﬂ

tf.constant(3.0, dtype=tf.float32, name="a")

tf.constant(4.0, name="b") # also tf.float32 implicitly

a+b

a*b

a/b

tf.sqrt(a) # scalar

tf.constant([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=tf.float32) # rank 1 tensor

tf.constant([[1], [2]1, [3]1, [4]1, [5]1, [6], [7], [81, [9], [10]], dtype=tf.float32) # rank 2 tensor
= ¢/d # compute a rank 2 Tensor for this division

a
b

total
product
quotient

srt
C
d

Q
5
-
@)
d—
e
D
-
0

This script defines two constants, a and b, and then computes
the sum, product, ratio of these and the square root of a.

It also defines 2 tensors and computes the ratio of both of these.

Note that c and d do not have names. These will have default
names of Const and Const_1 when inspecting graphs using
TensorBoard.

C truediv_1
\ Const ‘7 rue |V_

____»Const10 ——— aquotient
g ¢

&
%O Queen Mary

University of London

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW

OpS.PY.,

ops2.py

l‘[Uses tensorflow %

Printing tensors provides information about their shape,
type and name.

a
b

Total
Product
sqrt(a)
N=(1,...10)
sqrt(c)
sqrt(d)

print("a

print("b
print("Total
print("Product
print("sqgrt(a)
print("N=(1,...10)
print("sqgrt(c)
print("sqrt(d)

a)

b)

total)
product)
srt)

)
tf.sqgrt(c))
tf.sqrt(d))

Tensor("Const:0", shape=(), dtype=float32)
Tensor("Const_1:0", shape=(), dtype=float32)
Tensor("add:0", shape=(), dtype=float32)
Tensor("mul:0", shape=(), dtype=float32)
Tensor("Sqrt:0", shape=(), dtype=float32)
Tensor("Const_2:0", shape=(10,), dtype=float32)
Tensor("Sqrt_1:0", shape=(10,), dtype=float32)
Tensor("Sqrt_2:0", shape=(10, 1), dtype=float32)

&
%O Queen Mary

University of London

M_h
PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW

opsS.py, OpsS2.py Uses rensortiow

need to use sess.run(tensor) to print out the values of
the tensors; or specify the default session and eval().

sess = tf.Session() sess = tf.Session()
print("\nGraph calculations (evaluation)") with sess.as_default():
print("a ", sess.run(a)) print("\nGraph calculations")
print("b ", sess.run(b)) print("a
print("Total ", sess.run(total)) print("b
print("Product sess.run(product)) print("Total
print("Quotient sess.run(quotient)) print("Product

, ", a.eval())
print("sqrt(a) , sess.run(srt)) print("Quotient

", b.eval())

", total.eval())

", product.eval())

", quotient.eval())

", tf.sqrt(a).eval())
", c.eval())

", tf.sqrt(c).eval())
", tf.sqrt(d).eval())
", aquotient.eval())

print("N=(1,...,10) sess.run(c)) print("sqrt(a)
print("sqrt(N=1,...,10) sess.run(tf.sqrt(c))) print("N=(1,...,10)
print("sgrt(N=1,...,10) sess.run(tf.sqrt(d))) print("sqrt(N=1,...,10)
print("Quotient(2x2 array) .run(aquotient)) print("sqrt(N=1,...,10)

print("Quotient(2x2 array)

a

b

Total

Product

Quotient

sqrt(a)

N=(1,...,10) . 4. 5. 6. 7. 8. 9. 10.]

sqrt(N=1,...,10) 99999994 1.41421342 1.73205078 1.99999988 2.23606801 2.44948959
2.64575124 2.82842684 . 3.1622777]

\-&_ Queen Mary

University of London

P

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 21

MATHEMATICAL OPS: ELEMENT WISE

» The operators +, -, * and / are defined for tensors so that
element wise computations are performed on the data.

» Mathematical operations are also defined (like tf.sqrt that

we have already seen).
Module: tf.math

tf.abs: compute the magnitude of a complex number

Functions

tf.acos: element wise computation of acos (inverse cosine)

Basic arithmetic operators.

See th hon/math_ ide. . . .
ee e pyihon/maih.-ops guide tf.acosh: elementwise computation of acosh (inverse

hyperbolic cosine)

Functions

abs(...) : Computes the absolute value of a tensor.
accumulate_n(...) : Returns the element-wise sum of a list of tensors.
acos(...) : Computes acos of x element-wise.

acosh(...) : Computes inverse hyperbolic cosine of x element-wise.
add(...) : Returns x + y element-wise.

o
https://www.tensorflow.org/api_docs/ A-Bevan W Queen Mary

University of London

https://www.tensorflow.org/api_docs/

P

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 22

MATHEMATICAL OPS: ELEMENT WISE » ops3.py

» The operators +, -, * and / are defined for tensors so that
element wise computations are performed on the data.

» Mathematical operations are also defined (like tf.sqrt that

we have already seen).
Module: tf.math

tf.add: element wise computation of the sum of two
contents tensors (equivalent to +)
Functions
Basi ithmeti tors. . . .
asic arfhmetic operators tf.div: element wise computation of the sum of two

See the python/math_ ide. I
ee the python/math_ops guide tensors (equivalent to /)

Functions tf.multiply: element wise computation of the sum of two
abs (. ...) : Computes the absolute value of a tensor. tensors (equivalent to *)

accumulate_n(...) : Returns the element-wise sum of a list of tensors.

acos(...) : Computes acos of x element-wise. tf.subtract: element wise computation of the sum of two
acosh(. ..) : Computes inverse hyperbolic cosine of x element-wise. tensors (equivalent to -)

add(...) : Returns x + y element-wise.

etc. 4
https://www.tensorflow.org/api_docs/ A-Bevan W Queen Mary

University of London

https://www.tensorflow.org/api_docs/

s

3N
PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW

ops math.py

In addition to element wise operations that are defined,
TensorFlow has a number of figure of merit (metric)
computations defined, including:

.reduce_sum(data)))
.reduce_mean(data)))
.reduce_prod(data)))
.reduce_max(data)))
.reduce_min(data)))

print("sum over data(x_1i)
print("mean of data(x_1)

print("product of data(x_1i)
print("max of data(x_1)
print("min of data(x_1)

For some data (this example uses a numpy array, it also
works with tensors) we can compute the sum, mean,

product ... of the elements. Nf&
L

e.g. the op reduce_sum is equivalentto i=1

\g__ Queen Mary

University of London

https://www.tensorflow.org/api_docs/

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW

ops math.py

(-'-

NN WWNNNNGPRAAOODOUINPA, PR NO

print("data = ", sess.run(tfdata)) = [[3.83530951]

print("sqrt(data) " sess.run(tfdata_sqrt)) .74515772]
.88968015]
.64437866]
.98929119]
.4733634]
.16034889]
.85981894]
.64196539]
.12365866]]
(data) = [[1.23743987]
.17089605]
.85450673]
.52895212]
.82333779]
.10028958]]
.00517058]
.26054609]
.3115747]
.9214375 1]

sqgr

print("sum over data(x_1i) = . reduce_sum(data)))
print("mean of data(x_1i) . reduce_mean(data)))
print("product of data(x_i) = . reduce_prod(data)))
print("max of data(x_1i) = . reduce_max(data)))
print("min of data(x_1) = . reduce_min(data)))

e N e Y e T e N e N st Y e Y e T e P N s Y s Y e I e N st Y s Y s Y s I e R

sum over data(x_1i) 00.3449
mean of data(x_1i) 5.26729
product of data(x_1i) 8.28159%e+07
max of data(x_1i) 9.25418
min of data(x_1i) 2.31924

&
%O Queen Mary

University of London

https://www.tensorflow.org/api_docs/

&)ﬂ.
PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 25

MATHEMATICAL OPS: MATRIX OPERATIONS » ops_matrix.py

» Many of the ops required for models involve matrix multiplication.

» Data will generally have more than one feature (dimension) e.g. a
2D image has an x and a y value for each pixel and a colour value
(grey scale) or three colour values (R, G, B image).

» Models will process that information by multiplying the input data
by some scale factor (called a weight).

» One can think of the weights as individual numbers that are used
to multiply individual elements, and to sum over all operations
required for the computation.

» It is convenient to write these as a matrix multiplication.

o
A gevan QW Queen Mary

University of London

P

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 26

MATHEMATICAL OPS: MATRIX OPERATIONS » ops_matrix.py

» Useful TensorFlow ops for matrix manipulation include:
> mathI: c = tf.matmul(a, b)
2 matrix_determinant: detA = tf.matrix determinant(a)

D matrix_inverse: invA = tf.matrix inverse(a)

Note that the matrix_inverse does
not work with integer matrices

nnnnnnnnnnnnnnnnnn

P

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 27

RANDOM NUMBERS

» Random number generation is useful for two things:

» Weight parameter initialisation

» Generating simulated data sets that can be used for testing models.

» TensorFlow has a number of functions to generate tensors of random
numbers with different distributions:

tf
tf
tf
tf
tf
tf
tf
tf

VvV VvV VvV VvV VvV VvV v Vv

. random.rand
.random normal
.truncated normal
.random uniform
.random shuffle
.random crop
.multinomial

. random gamma

https://www.tensorflow.org/api_docs/python/tf/random

:h In addition to these tf.set_random seed |
| can be used to ensure that the random

number sequence is reproducible.

L
A.Bevan \Q“Q_sl Queen |\/|al’y

University of London

https://www.tensorflow.org/api_docs/python/tf/random

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 28

RANDOM NUMBERS

» Problem - generate a random number and repeatedly
evaluate the tf Variable to see what happens.

In [8]: import tensorflow as tf
In [9]: var = tf.random_uniform([1])
In [10]: sess = tf.Session()

In [11]: sess.run(var)
Out[11]: array([0.13961828], dtype=float32)

In [12]: sess.run(var)
Out[12]: array([0.03476107], dtype=float32)

In [13]: sess.run(var)
Out[13]: array([0.9375539], dtype=float32)

In [14]: sess.run(var)
Out[14]: array([0.29881644], dtype=float32)

https://www.tensorflow.org/api_docs/python/tf/random

| This scalar evaluates to 0.1396... the first time it

—

Create a tf Variable with shape [1].
1\
|l

is evaluated.
It gives 0.03476... the second time

and changes every subsequent time it is
‘evaluated.

I I

L
A.Bevan \Q“Q_‘:;I Queeﬂ |\/|al’y

University of London

https://www.tensorflow.org/api_docs/python/tf/random

s

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW

generating_data.py e |

Generate 10k examples to plot: define the graph:

Ngen = 10000
tdata_normal tf.random_normal([Ngen], 3, 1.0)

tdata_uniform = tf.random_uniform([Ngen], @, 5)

Run the computation

init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)

Convert tf.Variables to numpy arrays for plotting.
data_normal sess.run(tdata_normal)
data_uniform = sess.run(tdata_uniform)

data_sqrtuniform = sess.run(tf.sqrt(tdata_uniform))

data normal,data uniformanddata sqrtuniform
are numpy ND arrays of the corresponding Tensor.

o

%O Queen Mary
Uni

versity of London

e

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW
generating_data.py e |

Note: If you use tensorflow variables to represent the
random numbers:

tdata_normal tf.random_normal([Ngen], 3, 1.0)

tdata_uniform = tf.random_uniform([Ngen], @, 5)

The graph will be updated each evaluation step.

This will result in new random numbers being generated
each step... which is not necessarily what you want.

Conversion via numpy arrays, or generating random
numbers using numpy arrays avoids this issue.

o

%O Queen Mary
Uni

versity of London

P

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW

generating data numpy.py

For a single ensemble of random numbers it is better to
use numpy, or to evaluate the tf Variable and assign that to

a numpy array.

Ngen = 10000
data_normal = 1.0*np.random.randn(Ngen)+3.0

data_uniform = 5.0*np.random.random(Ngen)
data_sqgrtuniform = np.sqrt(data_uniform)

NumPy has many available functions to call that will yield
randomly sampled numbers

numpy.random.random
numpy.random.randn
numpy.random.logistic
numpy.random.exponential
numpy .random.polisson
numpy.random.multinomial
numpy .random.gamma

o

%O Queen Mary
Uni

versity of London

https://docs.scipy.org/doc/numpy/reference/routines.random.html

P

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 32

GENERATING DATA » generating_data.py |

» generating_data_ numpy.py | matpletibpyplot
» This script uses matplotlib.pyplot to make three pdf files,

one for each distribution.

700

600 -

TensorFlow TensorFlow 2001

500 -

5 150
400 5

300 - 3 100

Number of entries

200 A
50 1
100 A

600 -
200 A

500 -

3
5 150 A
400 A S

Y—
(]

300 A g 100 A
1S

Number of entries

o}
200 - z
50
100

= T T T O'
-1 0 1 2 3 4 5 6 7 0 1 2 3 4 5 0 1 2 3 4 5

0-

Here we see different sequences of random numbers generated, however both TensorFlow N
and NumPy are generating data, sampling from the same underlying distributions. A.Bevan W Queen Mary

University of London

W&E

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 33

The TensorFlow programming approach, defining the graph and then performing
computation according to that graph has been discussed.

TensorBoard helps us inspect model graphs, which is very useful for more
complicated models.

We have explored the use of variables and constants in TensorFlow.

Looked at a variety of operations, ranging from element wise, through to matrix
operations on tensors.

Introduced random numbers (useful for hyperparameter [HP] initialisation when
we come to discuss machine learning).

Generated some data that can be used for analysis.

These basic building bocks (along with the Python we have already covered)
will allow us to start exploring machine learning in the next set of coding slides.

L
A.Bevan \E‘Qf! Queeﬂ Mary

University of London

P

PRACTICAL MACHINE LEARNING: INTRODUCTORY TENSORFLOW 34

SUGGESTED READING

» There are a number of books on TensorFlow available, but
as this is a quickly changing framework, the most useful
reference for you will be the TensorFlow website, and web
searches for any errors that you might encounter.

» e.g.

» https://www.tensorflow.org/get_started/

» https://www.tensorflow.org/api_docs/python/

» https://stackoverflow.com

o
A.Bevan @_@l Queeﬂ |\/|al’y
University of London

https://www.tensorflow.org/get_started/
https://www.tensorflow.org/api_docs/python/
https://stackoverflow.com

