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LECTURE PLAN

» Context
» The problem
» Describe code examples that you need to modify

» Timeline
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PRACTICAL MACHINE LEARNING: FUNCTION APPROXIMATION

We have discussed machine learning using neural
networks, including regression and classification problems.

This is a regression based problem that will require the use
of algorithms discussed so far, and you will need to bring
together skills based on the use of both Python and
TensorFlow to solve this.

An example script is provided, where you are expected to
modify functions and apply this to explore various issues
regarding training performance.
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THE PROBLEM

» Reminder: Neural networks are function approximators of
the general form (bias implied by w): y = f(x,w) for a
single valued input function.

» We have discussed various scenarios of using these
algorithms, but here we consider a simple architecture.

ARCHITECTURE

L REQUIRED TO
>ingle input gl \PPROXIMATE THE
SPECIFIED FUNCTION

- Single output
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THE PROBLEM

» Reminder: Neural networks are function approximators of
the general form (bias implied by w): y = f(x,w) for a
single valued input function.

» We have discussed various scenarios of using these
algorithms, but here we consider a simple architecture.

E.G. SINGLE OR
Single input  =—— MULTILAYER —  Single output

PERCEPTRON.
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THE PROBLEM

» Adapt the sample script to train, validate and test an MLP
to approximate the following functions:

f(w) — 2 The assessed work uses the xé
| function
fl@) =V
f(:lj) _ Sin(.flj) Additional functions are given
in case you complete the
f(.CIJ, y) = 2 + y2 ‘assignment quickly.

» For the domain range xe[-1,1]* and for the last function
yel-1,1].

» Start from the example script:

Example FunctionApproximator.py

&
* for the square root function you will need to adapt this range to x€[0,1] A.Bevan %Q Queen Mary
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EXAMPLE_FUNCTIONAPPROXIMATOR.PY

» Uses tensorflow and matplotlib, numpy is included as this
may be useful for you to work through the problem.

# Network training parameters

learning rate = 0.01
training epochs = 100
min x = -10
max x = 10

Ngen = 10000

Training data

100 -

sqr{x)

f{x)

min X 0 max X

nnnnnnnnnnnnnnnnnn
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EXAMPLE_FUNCTIONAPPROXIMATOR.PY

» Uses tensorflow and matplotlib, numpy is included as this
may be useful for you to work through the problem.

# Network architecture parameters

n_input =1 # 1D function, so there is one input feature per example
n classes =1 # Regression output is single valued
n hidden 1 = 50 # 1lst layer num features
1
x (input) f(x) (output = y)
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EXAMPLE_FUNCTIONAPPROXIMATOR.PY

def myFunctionTF(arg):

User defined function for the MLP to learn. The default example is
the square root function.

return tf.square(arqg)

» The function the perceptron will try and approximate is
implemented in the myFunctionTF function.

» The argument is a TF Variable with a definite shape [?, 1] for
the 1D approximator problem.

» Use TF ops on tensors, and not math functions (that operate
on scalars) to compute the function.
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EXAMPLE_FUNCTIONAPPROXIMATOR.PY

» x _andy are the input value and f(x) output (ground truth),

respectively

tf.placeholder(tf.float32, [None, n input], name=“x ")
tf.placeholder(tf.float32, [None, n classes], name="y

X_
y

")

» The hidden layer is constructed using weights and a bias,
along with an activation function (relu is used in the example).

» Weights are randomly initialised

tf.Variable(tf.random normal([n_ input, n hidden 11]))
tf.Variable(tf.random normal([n hidden 11))
tf.nn.relu(tf.add(tf.matmul(x ,w layer 1),bias layer 1))

w_layer 1
bias layer 1
layer 1

» Output (probabilities) node is created similarly

output tf.Variable(tf.random normal([n hidden 1, n classes]))
bias output tf.Variable(tf.random normal([n classes]))
probabilities = tf.matmul(layer 1, output) + bias output
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EXAMPLE_FUNCTIONAPPROXIMATOR.PY

» Use the L2 loss function as the figure of merit for
optimisation.

» Along with the Adam optimiser algorithm.

cost = tf.nn.12 loss(output layer - y )

optimizer = tf.train.AdamOptimizer(learning rate=learning rate).minimize(cost)

» These will be discussed in the next lecture.

» We want to perform a regression analysis, so set the
output probability to the output layer value: probabilities.
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EXAMPLE_FUNCTIONAPPROXIMATOR.PY

» Having set the graph up we need to evaluate this for each

training epoch.

for epoch in range(training epochs):

the cost = 0.

sess.run(optimizer, feed dict={x : traindata, y : target value})
the cost = sess.run(cost, feed dict={x : traindata, y : target value})

cost set.append(the cost)
epoch set.append(epoch+1)

the cost = sess.run(cost, feed dict={x : testdata, y : test value})
cost test value.append(the cost)
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ADDITIONAL PROBLEMS [SEE THE WORKSHEET FOR THE ASSESSED PROBLEMS, THESE
ARE IDEAS FOR YOU TO WORK ON IF YOU FINISH THAT WORK.

» For each function, document:

1. Cost evaluated on the test and validation samples as a function of epoch. Use 10,
100, and 1000 training cycles.

2. The predictions of a test sample of data for a training sample size of 103, 104, and
105 examples using a reasonable number of training epochs.

3. Compare the performance of a relu activation function with that of a sigmoid
activation function.

4. Compare results and training behaviour changing the learning rate from 0.001
through 0.2 in a few discrete steps.

5. Modify the code to explore the performance difference between a single hidden
layer and two hidden layers.

» For one of your functions (choose one with good performance) explore what happens

when you train a network on a range of data [-10, 10], but use this to predict over a wider
range [-20, 20]
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SUMMARY

» The ability for a
network to adapt to a
given function
depends on the
number of training
cycles and the number
of training examples
presented to it.

This set of exercises
allows you to get
experience with
variations in training
performance as a
function of these
quantities.

fix) = f(x)
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Network Response Function
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Using a relu activation function and two hidden layers.

The network is able to provide reasonable predictions over the
range [-10, 10]
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