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LECTURE PLAN

» Classification

» Examples

» MNIST

» Introduce the softmax activation function for multiclass output
problems.

» Particle physics example: Spin-parity assignment of the
Higgs boson using H — 777~

» Summary
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CLASSIFICATION

» From the introductory NNs Lecture
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Input layer of n perceptrons;
one for each dimension of the

input feature space

|

|

Output layer of perceptrons;
one for each output type. In
this case the network has
only one output.

Hidden layer of some number
of perceptrons, M; at least one
for each dimension of the input
feature space.
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PRACTICAL MACHINE LEARNING: CLASSIFICATION

The final perceptron in a network can be used to assign a
type to a data example.

e.g. consider a binary activation function that gives an all
or nothing response with a data sample that contains
two types of event (signal and background)

Let all correspond to the other: signal

1.0

Multi-class output is discussed shortly.
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EXAMPLES: MNIST

» For more than two classification output types we need to have Nyype
perceptrons in the final output layer.

» Each output perceptron has an all or nothing response that classifies if a
training example is classified as that type or not.

» e.g.the numbers 1,2, 3,...9, 0 [MNIST example]

» If we have a complete set of possible outcomes then we can use this
constraint to reduce the number of perceptrons to Nyyge.

» Assumes that the default classification for one category is given by an
example not being classified as any of the others.

&
http://yann.lecun.com/exdb/mnist/ A.Bevan W Queen Mary

University of London
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EXAMPLES: MNIST

» 60000 training examples

» 10000 test examples

» These are greyscale images (one number required to
represent each pixel)

» Renormalise [0, 255]onto [-1, 1] or [0, 1] for
processing®.

» Each image corresponds to a 28x28 pixel array of data.

» For an MLP this translates to 784 features.

* Depends on which activation function is being used.
http://yann.lecun.com/exdb/mnist/ A.Beva ‘c;_ Queen Mary

Universit y of London
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EXAMPLES: MNIST

PRACTICAL MACHINE LEARNING: CLASSIFICATION 7

» The Nype = 10 perceptrons are used to make the following decisions:

® The number 1 vs not the number 1
® The number 2 vs not the number 2
® The number 3 vs not the number 3
® The number 4 vs not the number 4
® The number 5 vs not the number 5
® The number 6 vs not the number 6
® The number 7 vs not the number 7
® The number 8 vs not the number 8
¢ The number 9 vs not the number 9

® The number 0 vs not the number 0

http://yann.lecun.com/exdb/mnist/

S T =

For those with a statistical background,
 this is like a null hypothesis and an
| alternative hypothesis.

The null hypothesis provides a specific
response/expectation.

The alternative hypothesis is the
complement of the null.

In this context you classify an example |
as a specific type, or you provide a
decision that it is not that type.

We will see more of the MNIST data when
talking about convolutional neural networks.
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EXAMPLES: MNIST

» An alternative representation is to use a softmax activation

function to encode the 10 outputs in a single function.

T o o . o o 3
eW; & i is the index for the output classification

fj (CIZ‘) — N T type

Zz‘:1 e’

The score for the ith output is normalised
by the sum of outputs.

- ,w’.ll”x i fi(x) is normalised to lie in the range [0, 1]

flx) = .
Z’f\il B’UJ;TCL' . 1.0

<77 ,
T y 22 7 1.0
W N T 0.5 75 Z

e
» Can convert output to {0, 1}.

Example of the ith output of a softmax activation os
function for a 2D input feature space. 1.0

Y -1.0

o
http://yann.lecun.com/exdb/mnist/ A.Bevan WO Queen Mary
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EXAMPLES: MNIST

» LeCun's website lists a number of complicated ways to train a neural network to

solve this problem.

» Recent advances in computing have allowed the use of GPU’s have meant that
MLPs have been applied to the MNIST data, and have produced good results: error

rate of 0.35% (Ciresan et al [1]).

ID architecture test error for best test  simulation  weights

(number of neurons in each layer) | best validation [%] error [%)] time [h] [milions]
1 1000, 500, 10 0.49 0.44 23.4 1.34
2 1500, 1000, 500, 10 0.46 0.40 44.2 3.26
3 2000, 1500, 1000, 500, 10 0.41 0.39 66.7 6.69
4 | 2500, 2000, 1500, 1000, 500, 10 0.35 0.32 114.5 12.11
5 9 x 1000, 10 0.44 0.43 107.7 8.86

[1] Neural Computation, Volume 22, Number 12, December 2010

http://yann.lecun.com/exdb/mnist/
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EXAMPLES: MNIST

» 35 training examples were mis-classified by the best NN architecture
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[1] Neural Computation, Volume 22, Number 12, December 2010 ‘-Qs’ Queen Mary
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EXAMPLES: SPIN-PARITY OF THE HIGGS BOSON

» Classification is used in a variety of particle physics
scenarios:

» Make trigger decisions [all or nothing selection]

» Identify types of particle [provide labels for events to
map against charged particle type]

» Make perform a hypothesis test on some data (e.g. spin-
parity analysis of the Higgs boson)

» First we introduce a small amount of particle physics to set
the context.
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EXAMPLES: SPIN-PARITY OF THE HIGGS BOSON

» Atoms are made up of a

] .E:V h V4
nucleus that is surrounded by f%ﬁ/!%%g;%ﬂf\ I\ X
&g\ D3 o\ )

one or more electrons.

» The nucleus contains neutrons
and protons - each of these is
made of up and down quarks.

» The force carriers play a role in:
» g: binding nuclear material;

» y: binding electrons to
atoms.
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EXAMPLES: SPIN-PARITY OF THE HIGGS BOSON

» Antiparticles exist for these BT EMENT R, .
partiF::Ies* Q EME NTL\ 2 QY%
&RI’ ILL

> Combinationg of:
qq
q4qq

» can form new particles that
live for a short period of time.

» Lifetime depends on mass,
but is typically 10-12-10-15 s,

* The photon, v, is its own antiparticle.
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EXAMPLES: SPIN-PARITY OF THE HIGGS BOSON

» We build large instruments to detect charged particles.

» There are sets of similar objects to be identified and we
can use machine learning and Al to assist in this task.

» e.g. consider charged particles that we reconstruct as
"tracks” (c.g. vapour trail indicating the passage of a

plane).
Schematic (not to scale) of the penetrating power of charged particles passing through material.
e >
n >
o >
¥ >
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PRACTICAL MACHINE LEARNING: CLASSIFICATION

EXAMPLES: SPIN-PARITY OF THE HIGGS BOSON

» Lets consider the ATLAS detegtor at CERN'’s Large Hadron
Collider: = —
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' ‘. , Tile calorimeters
. LAr hadronic end-cap and
' ) forward calorimeters
Pixel detector

LAr eleciromagnetic calorimeters

Toroid magnets

Muon chambers Solenoid magnet | Transifion radiafion tracker

Semiconductor tracker

b
Each part of the detector system provides information (electronic pulses) every 25ns.  A.Bevan ¥Q Queen Mary

University of London
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PRACTICAL MACHINE LEARNING: CLASSIFICATION

EXAMPLES: SPIN-PARITY OF THE HIGGS BOSON

» Protons are brought together in the heart of the ATLAS detector at the
“Interaction point”.

» Many things can happen in the pp collision; we are only interested in
very rare events and use pre-selection to identify them for further
analysis.
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One T decays into an electron (blue)

The other T decays into p (red) @ATLAS

EXPERIMENT
http://atlas.ch
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Run: 204153
Event: 35369265
2012-05-30 20:31:28 CEST

Thisisa H — 777~ candidate event (example) WO Queen Mary

University of London
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EXAMPLES: SPIN-PARITY OF THE HIGGS BOSON

» The Standard Model of particle physics predicts one Higgs
boson, and that is a scalar particle.

» Scalar means that the spin quantum number is zero and
that the wave function of the particle w (related to the
probability distribution) is an even function.

» Y is a complex number and the probability is given by

P = yp* = |y]?

‘*Qs’ Queen Mary
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EXAMPLES: SPIN-PARITY OF THE HIGGS BOSON

» Spin and parity are quantum numbers associated with fundamental particles.

» Spin is a degree of freedom, which takes the value J=0 for the Standard Model
Higgs boson.

» Parity is a degree of freedom related to the wave function of the particle;
» P =+1: Even Parity, means the wave function is even.
» P =-1: Odd Parity, means the wave function is odd.
» One question that needs to be addressed is:
» What is JP for the “Higgs boson” discovered at CERN in 20127
» Is it a scalar (JP = 0+), pseudo scalar (JP = 0-), or some mixture of states?

» To think in terms of hypothesis testing we can test if the Higgs boson is a scalar
particle or not; where the not option includes the pseudo scalar and mixture options.

Jézefowicz, Richter-Was, Was https://arxiv.org/abs/1608.02609 A.Bevan ‘Q’ Queen Mary

University of London
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EXAMPLES: SPIN-PARITY OF THE HIGGS BOSON

» The decay used for this classification problem is
H — 771~
» We will encounter data for this channel later in the course.

» The T lepton can decay into pairs of quarks, gq leptons (e, p)
and neutrinos.

» The decay to a final state including a p or a; meson can be
used to distinguish between the 0+ and 0- or mixture
hypotheses.

» The feature space used for the problem is reconstructed from
2 and 3 body final states of each T decay used to reconstruct
the Higgs candidate.

Jézefowicz, Richter-Was, Was https://arxiv.org/abs/1608.02609 A.Bevan \c.f,l Queen Mary

University of London
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EXAMPLES: SPIN-PARITY OF THE HIGGS BOSON

» For background, T leptons can decay in many ways

Modes with one charged particle

» For this problem we are interested

Jézefowicz, Richter-Was, Was https://arxiv.org/abs/1608.02609

particle” > 0 neutrals > OKOVT (85.35 +0.07 ) % S=1.3
(“1-prong”)
particle™ > 0 neutrals > OK?_ vy (84.71 +0.08 ) % S=1.3
Taa77a [a] (17.41 +0.04 )% S=1.1
[T 7 Ve [b] (36 +04 )x103
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€ Vel [6] ( 1.75 +£0.18 ) %
h= > 0K v, (12.06 +0.06 ) % S=1.2
h v, (11.53 +£0.06 ) % S=1.2
T v, [a] (10.83 +0.06 ) % 5=1.2
K v [a] ( 7.00 £0.10 ) x 103 S=1.1
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Modes with three charged particles
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h= prOu,
h=pth v,
h=p~ htu,
[ ]
IN.
[}
| 43.8% of the possible decays of |

w the T fit into these categories.
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Jézefowicz, Richter-Was, Was https://arxiv.org/abs/1608.02609

EXAMPLES: SPIN-PARITY OF THE HIGGS BOSON

» Feature space used:

» Invariant mass of the intermediate resonances (p, a1).

» Acoplanarity: angle between the decay planes of the
products of each T decay.

» y (energy asymmetry variables):

+ EY —E™ + EP’ —E™ mgl —mii +m?>°
yp() o E‘J‘E+ _I_EJ'I:_ 7 yal o Epo _I_Eﬂ:j: 2m2

» 4-momenta of visible decay products and intermediate
resonances: p'' = (E,p).
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EXAMPLES: SPIN-PARITY OF THE HIGGS BOSON

[ ] [ ] [ ] [ ] —I— — [ ] [ ] ,
» Acoplanarity distributions for H — 7777 resulting in 2p’s
3 3

g 200?1]O| 1 I I 1 1 1 1 I I 1 I I I I 1 I 1 I I 1 1 1 I 1 I I 1 I: 8 200?1]0l 1 I I I I 1 I I 1 1 I l I 1 I 1 I I 1 I I I 1 1 I 1 l:
E 1901 p° p° rest-frame3 = g 1901 p° p° rest-frame3 =
z ™ —a;v,a* >3 = - ™ —a; v,at >3 =
180 R I — 180 - Jda’ —
= y.'.oyo<0 1 = = y+°y°>o 1 E
170 o r — 170 b F —
= —e—— Scalar = = —e—— Scalar =
160F- ——— Pseudoscalar E 160 ——— Pseudoscalar =
1501 = 150 =
. aaaea : 3 E
14O§ +++::-0-—‘-_A_ ——A——‘_ —‘_:::‘_—*I:.:-.-.ﬁ.g 140 E’:_‘_-A-_A-_A__A__ o —-—0——0—o- - o L AA A——AE
130 :J'HA—“‘_‘_ ey oo " e re 130 = _._-o-"""_:’:—k b ey A A_—A—:’:*"—*'-o-_.__z
120F = 120F =
110F = 110 -
: 1 1 1 1 l 1 1 L L l L L L L l 1 1 1 1 l 1 1 1 1 I L 1 L L : : 1 L 1 1 l 1 1 1 1 l 1 1 1 1 l L 1 1 L l L 1 1 1 l 1 1 1 1 :
100 1 > 3 4 5 6 100, 1 > 3 4 5 6
(ppO pO (ppO p0

Jézefowicz, Richter-Was, Was https://arxiv.org/abs/1608.02609
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EXAMPLES: SPIN-PARITY OF THE HIGGS BOSON

» Model: A deep neural network with 6 layers each with 300
perceptrons and a single output perceptron in the 7th layer.

» Output perceptron uses a sigmoid activation function to
compute yp; all other perceptrons use a ReLU activation function.

» Use the Adam optimiser, with batch optimisation and dropout to
improve hyperparameter training.

» Use the area under the ROC curve (AUC) as the metric to
compare models. Theoretically best result is AUC = 0.782.

» Optimise a loss function that is based on the probability of each
of the possible outcomes for each event:

—Inp(ylyn) = —(y = 0) In(yn) — (y = 1) ln(l - yh>

Jézefowicz, Richter-Was, Was https://arxiv.org/abs/1608.02609 \Qs’ Queen Mary

Universit y of London
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EXAMPLES: SPIN-PARITY OF THE HIGGS BOSON

» Aside: ROC: Receiver Operating Characteristic

» A plot of the signal vs noise.

» Integrate the normalised distributions .§ 1
of signal and background predictions § -
as a function of model output; and plot EO.S_—
1-background efficiency vs signal 5 -
efficiency. § 0.6

5 F

»  lllustration here is for 3 different model :T:g 0.4:— — Fisher
types; we have encountered the Fisher /A - MLP
discriminant. The MLP will be covered 02
later in the course, and the BDT is . BDT
described elsewhere [1]. o) I A EE FE PR B N PR

0 010203040506070809 1

[1] For example see https://pprc.gmul.ac.uk/~bevan/teaching/ATLAS-UK-ML.html

Signal Efficiency

L
A.Bevan \ééQ_sl Queeﬂ |\/|al’y

University of London


https://pprc.qmul.ac.uk/~bevan/teaching/ATLAS-UK-ML.html

P

PRACTICAL MACHINE LEARNING: CLASSIFICATION

EXAMPLES: SPIN-PARITY OF THE HIGGS BOSON

Features/variables Decay mode: p= — p™ Decay mode: ali —p* Decay mode: aI—L —aj
pt =0 at | af — pnF, p° wata | a7 — pOnF, p¥ = ata
pT = a’ ¥
D; x 1 4 16
@; , and y;, yk 3 9 24
§; » 4-vectors 25 36 64
cp;-*’k,y,-,yk and m;, my 5 13 30
cpz ©s Yi» Yi» i, my and 4-vectors 29 45 78
Features/var- Decay mode: p* —pT Decay mode: cflt —p" Decay mode: azlt —at
iables pt =’ nt | ay — p'nT, P’ wata | oy — p'nt, p¥ = atno
i; True classification B 0.782 ) -
Pl 0.500
¢; , and yi, yk 0.624
4-vectors 0.638
cpz i 4-vectors 0.638

©; > Vi Yk and m,z,m;% 0.626

P; 1> Vi Vi m,2 , m,% and 4-vectors 0.639

» 0.5is arandom prediction, 1.0 is a perfect prediction. These models are all

somewhere in between, and none match the ideal best possible prediction.
Jézefowicz, Richter-Was, Was https://arxiv.org/abs/1608.02609 A.Bevan WO Queen Mary

University of London
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We have discussed the issue of making a decision given the output of
a neural network.

Binary classification problem using a single perceptron in the
output layer.

Multiple perceptrons in the output layer for a multi-class output.

Use of softmax activation functions as an alternative to multiple
perceptrons in the output layer.

Two examples have been discussed:

The MNIST benchmark handwriting recognition problem.

_|_

Determining the JP of the Higgs boson using [ — 7" 7 decays.

L
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SUGGESTED READING

» Discussion of event classification in text books

» MacKay: Information theory, inference and learning algorithms
» Chapter: V
» C.Bishop: Neural Networks for Pattern Recognition
» Chapter: 1
» C. Bishop: Pattern Recognition and Machine Learning
» Chapter: 1
» T.Hastie, R. Tibshirani, J. Friedman, Elements of statistical learning
» Chapter: 2,4,9,11

» Examples of classifiers used in particle physics:

» Bialas, Nemeth, Richter-Was, A multi-instance deep neural network classifier: application to Higgs boson CP
measurement, arXiv:1803.00838.

» Madrazo, Cacha, Iglesias, Lucas, Application of a Convolutional Neural Network for image classification to
the analysis of collisions in High Energy Physics, arXiv:1708.07034.

» Abrahao et al., Novel event classification based on spectral analysis of scintillation waveforms in Double
Chooz, arXiv:1710.04315.

» Jozefowicz, Richter-Was, Was, Potential for optimizing Higgs boson CP measurement in H = 11 decay at

LHC and ML techniques, arxiv:1608.02609.
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