
PRACTICAL MACHINE LEARNING
CNNS - CODING

DR ADRIAN BEVAN

�1

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

LECTURE PLAN
▸ Introduction

▸ Implementing:

▸ conv(olution) layers

▸ maxpool layers

▸ fully connected layers

▸ Output

�2

QMUL Summer School: https://www.qmul.ac.uk/summer-school/
Practical Machine Learning QMplus Page: https://qmplus.qmul.ac.uk/course/view.php?id=10006

https://www.qmul.ac.uk/summer-school/
https://qmplus.qmul.ac.uk/course/view.php?id=10006

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

INTRODUCTION
▸ The basic building blocks of a convolutional neural network (CNN) have

been discussed earlier.

▸ Need convolution layers to process regions of images

▸ Stride from one region of an image to the next to produce a
convolution image of the original feature space.

▸ Maxpooling is used for dimensional reduction of convolution images.

▸ Fully connected layers translate this final convolution or maxpool layer
output into a decision or regression score.

▸ Deep networks of this type can quickly start to generate hundreds of
thousands or millions of HPs that need to be optimised, and here normal
CPUs become a tiresome part of the development cycle for a model.

�3

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

CONVOLUTION/POOL LAYERS
▸ Before proceeding the input image needs to be reshaped from a flat 784

array of pixels to a 28x28 2D array:

▸ Arguments are: -1=feeding a batch of images, otherwise specify the
number of images to reshape; width (in pixels), height (in pixels), number
of colour channels.

▸ TensorFlow provides a tf.nn.conv2d function implementation to facilitate
construction of a conv layer.

▸ Also a maxpool function (in tf.nn.max_pool)

�4

‣ Example_MNIST_CNN.py

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

CONVOLUTION/POOL LAYERS
▸ weight_variables([5,5,1,32]):

▸ 5x5 convolution filter

▸ depth of 1 (number of input channels)

▸ stack of 32 convolution filters (number of output channels)

▸ weight_variables([32]):

▸ stack of 32 convolution filters (number of output channels)

�5

‣ Example_MNIST_CNN.py

32 x

Single channel (grey scale) images

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

CONVOLUTION/POOL LAYERS
▸ 2x2 max-pooling

▸ Input image size: 28x28

▸ Downsampling a 2x2 array of pixels to a single pixel results in a
14x14 array.

�6

‣ Example_MNIST_CNN.py

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

CONVOLUTION/POOL LAYERS
▸ Input 28x28 pixels, with a depth of 1

▸ Both conv layers use padding:

▸ Expand the input image to retain the same size [28x28] output image.

▸ Conv filter is a 5x5 filter, so the padding expands the 28x28 image to
a 32x32 image (adding a border of 2 pixels).

▸ 1st conv layer has 32 outputs, 2nd conv layer has 64 outputs.

▸ Maxpool layers then halve the image size:

▸ 1st pool layer: [28x28] reduces to a [14x14] image.

▸ 2nd pool layer: [14x14] reduces to a [7x7] image.

�7

‣ Example_MNIST_CNN.py

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

FULLY CONNECTED LAYERS
▸ The fully connected (FC) layer is just like an MLP.

▸ # Input nodes = (#pixels in input image) x (#filters)

 = (7x7) x 64
 (fixed by conv/maxpool config)

‣ # output nodes = 1024 (arbitrary choice of user)

�8

‣ Example_MNIST_CNN.py

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

FULLY CONNECTED LAYERS
▸ The fully connected (FC) layer is just like an MLP.

▸ Reshape the tensor to make sure that it is flat (like an MLP)
rather than square like an image.

�9

‣ Example_MNIST_CNN.py

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

FULLY CONNECTED LAYERS
▸ The fully connected (FC) layer is just like an MLP.

‣ Output of this FC layer is a relu function just like the final
layer of an MLP.

�10

‣ Example_MNIST_CNN.py

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

DROPOUT
▸ Dropout is achieved by using the nn.dropout function on

the model of the conv/maxpool and FC layer.

▸ The keep_prob placeholder is then set when training.

�11

‣ Example_MNIST_CNN.py

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

CNN MODEL OUTPUT
▸ The model is constructed from the fully connected layer,

compactifying the 1024 dimensional inputs to a 10 output
decision.

▸ This is achieved with the usual matrix multiplication step
we’ve seen throughout.

�12

‣ Example_MNIST_CNN.py

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

CNN MODEL OVERVIEW
▸ input image : conv : pool : conv : pool : FC : output node

�13

‣ Example_MNIST_CNN.py

28x28x1 32x(28x28x1) 32x(14x
14x1) 10

24 1064x(14x
14x1)

64x(7
x7x1)

(x32) (x64)

28x28x1
(=784 px) image

Padding results in 32
conv layer outputs
with the same shape
as the input.

Max-pooling reduces
the 32 conv layer
images to 14x14x1
(=196 px) images

Padding results in 64
conv layer outputs
with the same shape
as the input
(14x14x1).

Max-pooling reduces
the 64 conv layer
images to 7x7x1 (=49
px) images

Flatten the 64
7x7x1 images
into a single
layer with 1024
outputs
(reduced from
3136 features)

1024 features of
the FC layer are
parsed by the
output node to
provide one of
10 outputs.

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

OUTPUT
▸ Track the improvement in test and training sample over

the training epochs.

▸ Use test, train and validation
 images to quantify accuracy

�14

Accuracy(Train) = 0.9635 [biased metric*]
Accuracy(Test) = 0.9597
Accuracy(Validation) = 0.9646

*Remember that this is biased as the training sample is used to configure
the model. It is not a good metric to establish model performance.

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

WHAT IS HAPPENING WHEN MY NUMBERS ARE BEING CLASSIFIED?
▸ A CNN is a complicated algorithm, and it is easy to loose intuition with

what part of the input feature space (image) leads to a given conclusion.

▸ Can easily lead to a black-box mentality for machine learning
practitioners.

▸ But it is possible to ask the machine why it made a given decision; in this
context this amounts to understanding what part of the image led to the
classification.

▸ There are algorithms that allow you to probe this question.

▸ Grad Cam and Guided Grad cam are examples of these See Ref. [1].

▸ Reflecting on what parts of images lead to a mis-classification of an
example can help data scientists engineer a better model.

�15

[1] Selvaraju et al., https://arxiv.org/abs/1610.02391

https://arxiv.org/abs/1610.02391

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

GRAD CAM

▸ These examples (from Ref [1]) illustrate how different regions (edges for guided
back-prop and heat maps from the Grad Cam) have led to a given classification.

▸ These algorithms provide local explanations of a classification - the field of
computer science is actively working on methods for local and global explanations
to provide a deeper understanding of models - not just for deep learning.

�16

[1] Selvaraju et al., https://arxiv.org/abs/1610.02391

https://arxiv.org/abs/1610.02391

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

GRAD CAM: MNIST EXAMPLE

▸ These examples (made by one of our undergraduates: M. Karim) show the use
of these techniques in TensorFlow with CNNs that have 3 and 4 conv layers.

�17
M

N
IS

T
Ex

am
pl

e
fo

r a
 h

an
dw

rit
te

n
nu

m
be

r 1
, c

or
re

ct
ly

 c
la

ss
ifi

ed
.

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

SUMMARY
▸ CNN’s are straight forward to implement given the built in

functions provided by TensorFlow.

▸ Some work is required by the user to keep track of the
dimensional reduction if there is no padding, to ensure
that the shape from one layer to the next is correctly
computed.

▸ The final FC layer is reshaped from an image to a flat layer
of nodes, from which the final output model value can be
computed.

�18

A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

FURTHER READING
▸ The example CNN that we use is focussed on a simple interleaving of conv and

pool layers, using dropout to enhance HP optimisation, and a FG layer to
compactify information ahead of the output node.

▸ The AI community uses CFAR10 (RGB) images as a benchmark and there are more
complicated CNN structures that will provide a better performance than these.

▸ For example look at the AlexNet and inception CNN models.

�19

https://www.cs.toronto.edu/~kriz/cifar.html

https://www.tensorflow.org/tutorials/images/image_recognition

AlexNet:
 https://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Inception:
 https://arxiv.org/abs/1409.4842
 https://arxiv.org/abs/1409.4842
 https://arxiv.org/abs/1512.00567

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.tensorflow.org/tutorials/images/image_recognition
https://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.00567

