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LECTURE PLAN
▸ Introduction 

▸ Implementing: 

▸ conv(olution) layers 

▸ maxpool layers 

▸ fully connected layers 

▸ Output
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INTRODUCTION
▸ The basic building blocks of a convolutional neural network (CNN) have 

been discussed earlier. 

▸ Need convolution layers to process regions of images 

▸ Stride from one region of an image to the next to produce a 
convolution image of the original feature space. 

▸ Maxpooling is used for dimensional reduction of convolution images. 

▸ Fully connected layers translate this final convolution or maxpool layer 
output into a decision or regression score. 

▸ Deep networks of this type can quickly start to generate hundreds of 
thousands or millions of HPs that need to be optimised, and here normal 
CPUs become a tiresome part of the development cycle for a model.
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CONVOLUTION/POOL LAYERS
▸ Before proceeding the input image needs to be reshaped from a flat 784 

array of pixels to a 28x28 2D array: 

▸ Arguments are: -1=feeding a batch of images, otherwise specify the 
number of images to reshape; width (in pixels), height (in pixels), number 
of colour channels. 

▸ TensorFlow provides a tf.nn.conv2d function implementation to facilitate 
construction of a conv layer. 

▸ Also a maxpool function (in tf.nn.max_pool) 
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CONVOLUTION/POOL LAYERS
▸ weight_variables([5,5,1,32]): 

▸ 5x5 convolution filter 

▸ depth of 1 (number of input channels) 

▸ stack of 32 convolution filters (number of output channels) 

▸ weight_variables([32]): 

▸ stack of 32 convolution filters (number of output channels)
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32 x

Single channel (grey scale) images
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CONVOLUTION/POOL LAYERS
▸ 2x2 max-pooling 

▸ Input image size: 28x28 

▸ Downsampling a 2x2 array of pixels to a single pixel results in a 
14x14 array.
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CONVOLUTION/POOL LAYERS
▸ Input 28x28 pixels, with a depth of 1 

▸ Both conv layers use padding: 

▸ Expand the input image to retain the same size [28x28] output image. 

▸ Conv filter is a 5x5 filter, so the padding expands the 28x28 image to 
a 32x32 image (adding a border of 2 pixels). 

▸ 1st conv layer has 32 outputs, 2nd conv layer has 64 outputs. 

▸ Maxpool layers then halve the image size: 

▸ 1st pool layer: [28x28] reduces to a [14x14] image. 

▸ 2nd pool layer: [14x14] reduces to a [7x7] image.

�7

‣ Example_MNIST_CNN.py



A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

FULLY CONNECTED LAYERS
▸ The fully connected (FC) layer is just like an MLP. 

▸ # Input nodes = (#pixels in input image) x (#filters) 

                               =              (7x7)                     x       64 
                                          (fixed by conv/maxpool config) 

‣ # output nodes = 1024 (arbitrary choice of user)
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FULLY CONNECTED LAYERS
▸ The fully connected (FC) layer is just like an MLP. 

▸ Reshape the tensor to make sure that it is flat (like an MLP) 
rather than square like an image.
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FULLY CONNECTED LAYERS
▸ The fully connected (FC) layer is just like an MLP. 

‣ Output of this FC layer is a relu function just like the final 
layer of an MLP.
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DROPOUT
▸ Dropout is achieved by using the nn.dropout function on 

the model of the conv/maxpool and FC layer. 

▸ The keep_prob placeholder is then set when training.
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CNN MODEL OUTPUT
▸ The model is constructed from the fully connected layer, 

compactifying the 1024 dimensional inputs to a 10 output 
decision. 

▸ This is achieved with the usual matrix multiplication step 
we’ve seen throughout.
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CNN MODEL OVERVIEW
▸ input image : conv : pool : conv : pool : FC : output node
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‣ Example_MNIST_CNN.py

28x28x1 32x(28x28x1) 32x(14x
14x1) 10

24 1064x(14x
14x1)

64x(7
x7x1)

(x32) (x64)

28x28x1  
(=784 px) image

Padding results in 32 
conv layer outputs 
with the same shape 
as the input. 

Max-pooling reduces 
the 32 conv layer 
images to 14x14x1 
(=196 px) images

Padding results in 64 
conv layer outputs 
with the same shape 
as the input 
(14x14x1). 

Max-pooling reduces 
the 64 conv layer 
images to 7x7x1 (=49 
px) images

Flatten the 64 
7x7x1 images 
into a single 
layer with 1024 
outputs 
(reduced from 
3136 features)

1024 features of 
the FC layer are 
parsed by the 
output node to 
provide one of 
10 outputs.
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OUTPUT
▸ Track the improvement in test and training sample over 

the training epochs. 

▸ Use test, train and validation 
    images to quantify accuracy
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Accuracy(Train)           =  0.9635 [biased metric*] 
Accuracy(Test)             = 0.9597 
Accuracy(Validation)  = 0.9646

*Remember that this is biased as the training sample is used to configure 
the model.  It is not a good metric to establish model performance.
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WHAT IS HAPPENING WHEN MY NUMBERS ARE BEING CLASSIFIED?
▸ A CNN is a complicated algorithm, and it is easy to loose intuition with 

what part of the input feature space (image) leads to a given conclusion. 

▸ Can easily lead to a black-box mentality for machine learning 
practitioners. 

▸ But it is possible to ask the machine why it made a given decision; in this 
context this amounts to understanding what part of the image led to the 
classification. 

▸ There are algorithms that allow you to probe this question. 

▸ Grad Cam and Guided Grad cam are examples of these See Ref. [1]. 

▸ Reflecting on what parts of images lead to a mis-classification of an 
example can help data scientists engineer a better model.
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[1] Selvaraju et al., https://arxiv.org/abs/1610.02391 
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A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

GRAD CAM

▸ These examples (from Ref [1]) illustrate how different regions (edges for guided 
back-prop and heat maps from the Grad Cam) have led to a given classification. 

▸ These algorithms provide local explanations of a classification - the field of 
computer science is actively working on methods for local and global explanations 
to provide a deeper understanding of models - not just for deep learning.
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https://arxiv.org/abs/1610.02391


A. Bevan

PRACTICAL MACHINE LEARNING: CNNS - CODING

GRAD CAM: MNIST EXAMPLE

▸ These examples (made by one of our undergraduates: M. Karim) show the use 
of these techniques in TensorFlow with CNNs that have 3 and 4 conv layers.
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SUMMARY
▸ CNN’s are straight forward to implement given the built in 

functions provided by TensorFlow. 

▸ Some work is required by the user to keep track of the 
dimensional reduction if there is no padding, to ensure 
that the shape from one layer to the next is correctly 
computed. 

▸ The final FC layer is reshaped from an image to a flat layer 
of nodes, from which the final output model value can be 
computed.
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FURTHER READING
▸ The example CNN that we use is focussed on a simple interleaving of conv and 

pool layers, using dropout to enhance HP optimisation, and a FG layer to 
compactify information ahead of the output node.   

▸ The AI community uses CFAR10 (RGB) images as a benchmark and there are more 
complicated CNN structures that will provide a better performance than these. 

▸ For example look at the AlexNet and inception CNN models.
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https://www.cs.toronto.edu/~kriz/cifar.html  

https://www.tensorflow.org/tutorials/images/image_recognition 

AlexNet: 
    https://www.cs.toronto.edu/~fritz/absps/imagenet.pdf  

Inception: 
     https://arxiv.org/abs/1409.4842 
     https://arxiv.org/abs/1409.4842 
     https://arxiv.org/abs/1512.00567  

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.tensorflow.org/tutorials/images/image_recognition
https://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.00567

