

DR ADRIAN BEVAN

MULTIVARIATE ANALYSIS AND ITS USE IN HIGH ENERGY PHYSICS ADDITIONAL NOTES: UNSUPERVISED LEARNING

LECTURE PLAN

- Introduction
- K-means algorithm
- Anomaly detection
- Summary
- Suggested reading

INTRODUCTION

- We have been using labeled sets of data with a loss function to compare labels, Y, against model predictions for the data X.
 - This is supervised learning.
 - Can be thought of as computing a conditional probability P(Y|X).
- For unsupervised learning we don't have the luxury of labels and we want to learn the model in the absence of that information.
 - The goal of unsupervised learning is to infer the probability distribution P(X) from the data without using labels.

INTRODUCTION

- Many methods exist as it can be difficult to determine the accuracy of unsupervised methods.
 - Clustering methods such as K nearest neighbour (or Kmeans)
- Heuristic arguments are used to motivate models and justify the quality of outcomes.

K-MEANS ALGORITHM

- The aim is to determine the centroid positions C of K clusters in the data containing N examples using a Euclidean distance from the cluster mean to some data example.
- The variance of the clusters is minimised in order to determine the corresponding means of the cluster.

K-MEANS ALGORITHM

This follows Section 14.3.6 of Hastie et al.

Step 1:

• Given C compute the total cluster variance and minimise this with respect to the means of the clusters.

$$\min_{c,\{m_k\}_1^K} \sum_{k=1}^K N_k \sum_{C(i)=k} ||x_i - m_k||^2$$

> This gives the current mean positions of the clusters.

Step 2:

Given a set of means m, minimise these by assigning elements to the closest current cluster mean. i.e.

$$C(i) = argmin_{1 \le k \le K} ||x_i - m_k||^2$$

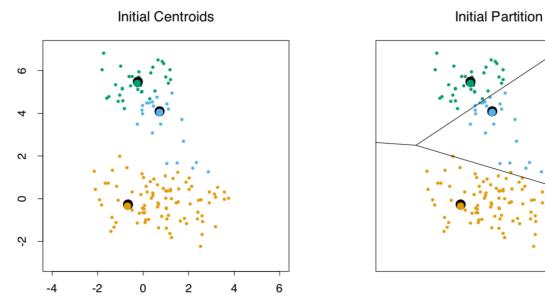
• Step 3:

Iterate until the assignments stabilise.

K-MEANS ALGORITHM

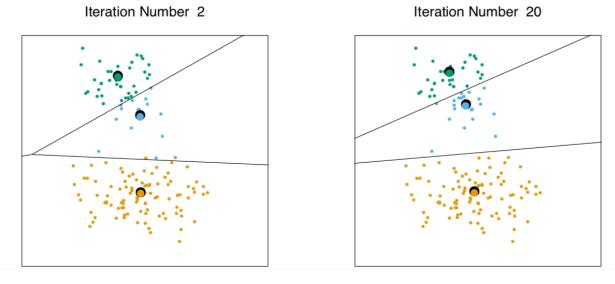
This follows Section 14.3.6 of Hastie et al.

This example shows successive iterations of the K-means algorithm to a set of data with K=3.



This algorithm has the number of clusters, K, as a parameter.

Clustering results will depend on the choice of K.



Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 14

ANOMALY DETECTION

- There are a number of anomaly detection algorithms that are available. Outlier detection is a common problem, but this is not something that has received much attention in the community compared with other problems.
- Some references that may be of interest as a starting point in this area:
 - Goldstein and Uchida, A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data, <u>https://journals.plos.org/plosone/</u> <u>article?id=10.1371/journal.pone.0152173</u>
 - Ahmad et al., Unsupervised real-time anomaly detection for streaming data, <u>Neurocomputing 262 (2017) 134-147</u>.
 - Schlegl et al., Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery, proceedings of IPMI 2017.
 - Chalapathy et al., Anomaly Detection using One-Class Neural Networks, <u>https://arxiv.org/abs/1802.06360</u>.

SUMMARY

- Unsupervised learning complements the techniques of supervised learning that we have discussed in this short course.
 - We discussed only one algorithm, a simple K-means clustering approach.
 - More complicated algorithms exist.
- Unsupervised learning can be applied to a wide range of situations.
 - The clustering example shown here is something that lends it self for discriminating between signals and noise in a detector, for example.

SUGGESTED READING (NON-HEP)

e.g. see Chapter 14 of Hastie, Tibshirani and Friedman, Elements of Statistical Learning and references therein.

