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LECTURE PLAN
▸ Introduction 

▸ Hard margin SVM 

▸ Soft margin SVM 

▸ Kernel function 

▸ Examples: 

▸ Checker board 

▸ H→𝜏+𝜏- at ATLAS (Kaggle Higgs data challenge) 

▸ HH→bb𝜏+𝜏- at ATLAS 

▸ stop searches at CMS 

▸ Summary and miscellaneous notes 

▸ Suggested tools 

▸ Suggested reading
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INTRODUCTION
▸ SVMs are widely used: 

▸ HEP problems are low dimensional simple use cases compared 
with issues being addressed for some of the existing fields 
using these algorithms.
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HARD MARGIN SVM
▸ Identify the support vectors (SVs): these are the points nearest the 

decision boundary. 

▸ Use these to define the hyperplane that maximises the margin 
(distance) between the optimal plane and the SVs. 

▸ If we can do this with a SVM – we would simply cut on the data to 
separate classes of event.
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HARD MARGIN SVM: PRIMAL FORM
▸ Optimise the parameters for the maximal margin hyperplane with: 

▸ such that 

▸ Equivalent to solving the following optimisation problem: 

▸ Where:                                  and 
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argmin
w,b

1

2
||w||2

yi(w · xi � b) � 1 (yi is called the functional margin)

w =
nX

i=1

↵iyixi b =
1

NSV

nX

i=1

(w · xi � yi)
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HARD MARGIN SVM: KERNEL FUNCTIONS
▸ We can introduce the use of a Kernel Function (KF) to 

implicitly map from our input feature space X to some 
potentially higher dimensional dual feature space F. 

▸ Define the function: 

▸ We don't need to know the details of the mapping; this is the 
"kernel trick”.
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K(x, y) = h�(x) · �(y)i

x1

x2

u1

u3

u2

X∈{x1, x2} F∈{u1, u2, u3}

B. Scholkopf and A. Smola, Learning with Kernels: Support Vector 

Machines, Regularization, Optimization and Beyond. MIT Press, 2002.
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HARD MARGIN SVM: KERNEL FUNCTIONS
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▸ We can introduce the use of a Kernel Function (KF) to 
implicitly map from our input feature space X to some 
potentially higher dimensional dual feature space F. 

▸ Define the function: 

▸ We don't need to know the details of the mapping; this is the 
"kernel trick”. B. Scholkopf and A. Smola, Learning with Kernels: Support Vector 

Machines, Regularization, Optimization and Beyond. MIT Press, 2002.

K(x, y) = h�(x) · �(y)i

F 2 {�(x)|x 2 X}x 2 Rne.g.
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HARD MARGIN SVM: DUAL FORM
▸ The problem can be solved in the dual space by minimising 

the Lagrangian for the Lagrange multipliers αi : 

▸ Such that:                  and                    . 

▸ αi are non-zero for SVs only. 

▸ The sum provides a constraint equation for optimisation.
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↵i � 0
nX

i=1

↵iyi = 0

eL(↵) =
nX

i=1
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1

2

X

i,j

↵i↵jyiyjx
T
i xj

=
nX
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1

2
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i,j
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SOFT MARGIN SVM
▸ Relax the hard margin constraint by introducing mis-classification: 
▸ Describe by slack (ξi) and cost (C) parameters. 
▸ Alternatively describe mis-classification in terms of loss functions. 
▸ These are just ways to describe the error rate. 

▸ These are much more useful!
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ξi = distance between the hyper-plane defined by 
the margin and the ith SV (i.e. now this is a mis-
classified event). 

Cost (C) multiplies the sum of slack parameters in 
optimisation. 

MVA architecture complexity is encoded by the KF.
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SOFT MARGIN SVM
▸ The Lagrangian to optimise simplifies when we introduce the slack 

parameters: 

▸ Where 

▸ and as before we constrain: 

▸ The algorithm is designed to focus on reducing the impact of 
misclassified events; again using those closest to the decision 
boundary to determine that boundary.
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eL(↵) =
nX

i=1

↵i �
1

2

X

i,j

↵i↵jyiyjK(xi, xj)

0  ↵i  C

nX

i=1

↵iyi = 0
The optimisation problem in dual space 
is essentially the same for the hard and 
soft margin SVMs.
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KERNEL FUNCTIONS
▸ The KF, K(x,y), extends the use of inner products on data in a vector 

space to a transformed space where 

▸ The book by  

▸ Nello Cristianini and John Shawe-Taylor, called Support Vector 
Machines and other kernel-based learning methods. Cambridge 
University Press, 2000 (and references therein) 

▸ discusses a number of KFs and the conditions required for these to be 
valid in the geometrical representation that SVMs are constructed from. 

▸ Here I’ll focus on the main points and give a few examples of KFs (ones 
that are implemented in TMVA).
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K(x, y) = h�(x) · �(y)i
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KERNEL FUNCTIONS: RADIAL BASIS FUNCTION (RBF)
▸ Commonly used KF that maps the data from X to F. 

▸ Distance between two support vectors is computed and used as 
an input to a Gaussian KF. 

▸ For two data x and y in X space we can compute K(x, y) as 

▸ One tuneable parameter in mapping from X to F; given by   
Γ=1/σ2.
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K(x, y) = e�||x�y||2/�2
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KERNEL FUNCTIONS: MULTI GAUSSIAN KERNEL
▸ Extend the RBF function to recognise that the bandwidth of data 

in problem space can differ for each input dimension; i.e. the 
norm of the distance between two support vectors can result in 
loss of information.   

▸ Overcome this by introducing a Γi=1/σi for each dimension: 

▸ Down side ... we increase the number of parameters that need to 
be optimally determined for the map from X to F.
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K(x, y) =

dim(X)Y

i=1

e�||xi�yi||2/�2
i
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KERNEL FUNCTIONS: MULTI GAUSSIAN KERNEL
▸ The multi-gaussian kernel does not include off-diagonal terms that 

would allow for accommodation of correlations between parameters. 

▸ De-correlate the input feature space to overcome this deficiency, 
or alternatively one could implement a variant of this kernel 
function using: 

▸ Here Σ is an n x n matrix corresponding to the covariance matrix 
for the problem. 

▸ However this would be very computationally expensive to 
optimise (and is not implemented in TMVA).

�14

K(x, y) = e�(x�y)T⌃�1(x�y)
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KERNEL FUNCTIONS: POLYNOMIAL
▸ There are many different types of polynomial kernel 

functions that one can study. 

▸ A common variant is of the form: 

▸ c and d are tuneable parameters.   

▸ The sum is over support vectors (i.e. events in the data set 
for a soft margin SVM).
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KERNEL FUNCTIONS: PRODUCTS AND SUMS
▸ Valid (Mercer) kernels satisfy Mercer’s conditions(*).  This 

allows us to construct new kernels from known Mercer 
kernels that are products and sums. 

▸ The sum of Mercer KFs is a valid KF. 

▸ The product of Mercer KFs is a valid KF.
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* Mercer's conditions require that the Gramm matrix formed from SVs is positive semi-definite.  This is a 
consequence of the geometric interpretation of SVMs given x is real.  Modern extensions of the SVM 
construct allow for complex input spaces, and for example can be based on Clifford algebra to 
accommodate this extension.  

Complex input spaces are of interest for electronic engineering problems. 

N.B. It is conceivable that one could be interested in using these if an amplitude analysis were to be 
written using SVMs to directly extract phase and magnitudes... but that could also be incorporated by 
mapping the complex feature space element into a doublet of reals.

J. Mercer. Phil.Trans.Roy.Soc.Lond., A209:415, 1909.



A. Bevan

X              F

MULTIVARIATE ANALYSIS AND ITS USE IN HIGH ENERGY PHYSICS: SUPPORT VECTOR MACHINES

EXAMPLES: CHECKER BOARD
▸ Generate squares of different colour. 

▸ Use SVM to classify the pattern into +1 and −1 targets. 

▸ Hard margin SVM problem; but can solved for using soft margin SVM. 

▸ Not easy to solve in 2D (x, y) with a linear discriminant, but e.g. a 3D space of 
(x, y, colour) allows us to separate the squares. 

▸ Want to find a KF that approximates this mapping.
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7!

7!
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EXAMPLES: CHECKER BOARD
▸ Generate 1000 events in the blue and red squares and give 

each event x and y values. 

▸ e.g. Use a multi-Gaussian kernel function with Γ1=1, Γ2=2 and 
cost of 104 (not optimised) to see what separation we can 
obtain.
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This is the ideal feature space that we would like to 
implicitly map into. 

Because we implicitly do the mapping via choice of 
KF, in practice we don't explicitly map into this 
space; but we implicitly map into another space that 
we hope will be approximately topologically 
equivalent.
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EXAMPLES: CHECKER BOARD
▸ Correctly classified events          Incorrectly classified events 

▸ Signal mis-classification rate ~3.3%. 

▸ Background mis-classification rate ~3.7%.
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EXAMPLES: CHECKER BOARD
▸ The confusion matrix ([in-]correctly classified events) for this 

example shows a high level of correct classification: 

▸ This SVM does a good job of separating signal from background. 

▸ An optimised output would provide a better solution. 

▸ BDTs and NNs work well with this kind of problem as well.
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EXAMPLES: CHECKER BOARD
▸ Optimised results for comparison: Very similar responses.
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Trained using the hold out method of cross validation (what is 
normally done in TMVA), with optimised hyper-parameters.
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EXAMPLES: H→𝜏+𝜏- (HIGGS KAGGLE DATA CHALLENGE)

▸ Use the Kaggle data challenge sample of signal and 
background events. LHC data (from ATLAS). 

▸ Packaged up in a convenient format (CSV file). 

▸ Sufficient description of variables provided for non-HEP 
users to apply machine learning (ML) techniques to HEP 
data. 

▸ Real application to compare performance for different KFs 
and different MVAs.
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https://www.kaggle.com/c/higgs-boson

https://www.kaggle.com/c/higgs-boson
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EXAMPLES: H→𝜏+𝜏- (HIGGS KAGGLE DATA CHALLENGE)

▸ Use 10 variables as inputs; 20K events.
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7) ΣpT
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10) ETtotal 

This selection of variables is not 
optimised, and is selected in order to 
show a physics example for 
illustrative purposes.

1)                                2)                                3)

4)                                5)                                6)

7)                                8)                                9)

10)  
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EXAMPLES: H→𝜏+𝜏- (HIGGS KAGGLE DATA CHALLENGE)

▸ NOTE: this is an illustrative example – not a fully optimised 
analysis of the sample; hyper-parameters are optimised.
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Spiky as 
optimisation 
chooses a low 
number of trees.

Trained using the hold out method of cross validation (what is 
normally done in TMVA), with optimised hyper-parameters.
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EXAMPLES: H→𝜏+𝜏- (HIGGS KAGGLE DATA CHALLENGE)

▸ SVM provides comparable performance to BDT (and 
neural networks)*.
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*This general conclusion has been reached in one form or another by people studying BDTs vs SVMs and NNs vs SVMs for 
HEP problems.  The take home message is that SVMs require less data to train in order to obtain a generalised result (follows 
from the fact there are fewer hyper-parameters to determine for SVMs vs other algorithms).

Bevan et al., proc CHEP 2016

https://arxiv.org/abs/1702.04686
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EXAMPLES: HH→BB𝜏+𝜏- (ATLAS - OFFICIAL RESULT)

▸ ATLAS recently reported limits on resonant and non-
resonant production of HH via bb𝜏+𝜏-.
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https://arxiv.org/abs/1808.00336 

‣ The standard analysis shown here uses a BDT for 
both channels that contribute to the final state: 

‣ Two hadronically decaying 𝜏 leptons. 

‣ One hadronically and one leptonically 
decaying 𝜏. 

‣ Results for the SM search are 12.7 times the 
Standard Model expected sensitivity.

https://arxiv.org/abs/1808.00336
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EXAMPLES: HH→BB𝜏+𝜏- (ATLAS THESIS)

▸ A student working on this mode also looked at using SVMs 
(instead of BDTs) for the analysis. 

▸ Similar performance obtained to the official result when using an 
SVM for both ROC curves and limit plots. 

▸ SVMs less susceptible (than BDT) to overtraining for small samples.
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ROC curves for different mass points in the 2HDM search, using one of the trigger lines for the bb𝜏+𝜏- channel.  

T. Stevenson, CERN-THESIS-2018-119

https://cds.cern.ch/record/2634914
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EXAMPLES: HH→BB𝜏+𝜏- (ATLAS THESIS)

�28

T. Stevenson, CERN-THESIS-2018-119

▸ A student working on this mode also looked at using SVMs 
(instead of BDTs) for the analysis. 

▸ Similar performance obtained to the official result when using an 
SVM for both ROC curves and limit plots. 

‣ SVMs less susceptible (than BDT) to overtraining for small samples.

BDT SVM

https://cds.cern.ch/record/2634914
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EXAMPLES: SVM HINT APPLIED TO CMS DATA
▸ Uses libsvm with an RBF kernel function to optimise two parameters: C 

and Γ. 

▸ Benchmark example of searching for top squark pair production with 
stops decaying into the lightest supersymmetric particle (LSP) and a 
top quark. 

▸ Could use the ROC area under the curve (AOC) to optimise on, but 
this is not directly related to the result being produced. 

▸ Instead use the Azimov estimate of the significance of the result as 
the figure of merit to compare and optimise performance on: 
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M. Sahin et al., Nucl. Instrum. Meth. A838 (2016) 137-146.

This is the median discovery significance from the Poisson form of the signal (s) and background (b), with an 
uncertainty on the background of σb.
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EXAMPLES: SVM HINT APPLIED TO CMS DATA
▸ The variable sets used for the SVM-HINT paper are

�30

M. Sahin et al., Nucl. Instrum. Meth. A838 (2016) 137-146.

As with other work on using ML methods the 
expected result that the combination of high 
level and low level (derived and primitive) 
features provides better performance than 
using just one of those sets. 

Results on the next two pages illustrate this.
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EXAMPLES: SVM HINT APPLIED TO CMS DATA
▸ Results are turned into a probabilistic score using a 

sigmoid function:
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M. Sahin et al., Nucl. Instrum. Meth. A838 (2016) 137-146.

Variable set 1 Variable set 2

ZA=11.5 ZA=2.5
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EXAMPLES: SVM HINT APPLIED TO CMS DATA
▸ Results are turned into a probabilistic score using a 

sigmoid function:

�32

M. Sahin et al., Nucl. Instrum. Meth. A838 (2016) 137-146.

Variable set 2 Variable set 3

ZA=6 ZA=3.5
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SUMMARY AND MISCELLANEOUS NOTES
▸ Use SVMs when: 

▸ You have small or very small training examples. 

▸ and you care about obtaining a generalised result (reproducibility 
of the output matters even if the data fed to the algorithm 
changes). 

▸ Computing time/resource (incl. memory) is not a problem. 

▸ Do not use an SVM when: 

▸ You have a lot of training examples and/or very little computing 
resource.
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SUMMARY AND MISCELLANEOUS NOTES
▸ We’ve looked at the hard and soft margin SVMs. 

▸ The algorithm stems from the same linear separation problem that is addressed by 
Rosenblatt’s perceptron paper. 

▸ However this focusses on how far an example is from the margin defining the 
separating hyperplane. 

▸ Can’t understand the mapping from the input feature space to the dual space (but we 
don’t have to). 

▸ SVMs are widely used outside of HEP. 

▸ They have been used for a broad range of physics studies in HEP, but the algorithm has 
not been widely adopted. 

▸ There are specific reasons why you would or would not want to use the algorithm. 

▸ Searches where you have limited training examples available (e.g. SUSY or Higgs BSM) 
are cases where you might want to look at the algorithm. 
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SUGGESTED TOOLS
▸ The SVM algorithm is implemented in a few different code 

bases. 

▸ scikit learn/R/Matlab/SVM-HINT*/ROOT: 

▸ libsvm from: https://www.csie.ntu.edu.tw/~cjlin/libsvm/  

▸ TMVA in ROOT: 

▸ HEP community developed SVM.
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* see Sahin et al in the references.

http://scikit-learn.org/stable/modules/svm.html
https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://root.cern.ch/tmva
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SUGGESTED READING (HEP RELATED)
▸ Background suppression (jets): 

▸ F. Sforza, V. Lippi, Nucl. Inst. Meth. A722, (2013), p11-19 (arXiv:1407.0317). 

▸ Flavour Tagging: 

▸ P. Vannerum et al., Freiburg EHEP-99-01 (hep-ex/9905027). 

▸ Machine Physics: 

▸ Bijan Sayyar-Rodsari, C. Schweiger, SLAC-R-948. 

▸ Review: 

▸ A. Vossen, Part of the proceedings of the Track 'Computational Intelligence for HEP Data Analysis' at iCSC 2006  arXiv:0803.2345. 

▸ Top: 

▸ A. Vaiciulis, Nucl. Instrum. Meth. A502 (2003) 492-494 (hep-ex/0205069). 

▸ S. Ridella et al., IEEE Conf.Proc. (2004) no.3, 2059-2064. 

▸ B. Whitehouse, FERMILAB-THESIS-2010-61. 

▸ SUSY: 

▸ M. Sahin et al., Nucl. Instrum. Meth. A838 (2016) 137-146. 

▸ Higgs: 

▸ Tom Stevenson, Thesis (QMUL 2018), CERN-THESIS-2018-119.
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SUGGESTED READING (NON-HEP)
▸ Nello Cristianini and John Shawe-Taylor, “Support Vector Machines and other 

kernel-based learning methods”, Cambridge University Press, 2000. [and refs. 
therein] 

▸ B. Scholkopf and A. Smola, “Learning with Kernels: Support Vector Machines, 
Regularization, Optimization and Beyond”, MIT Press, 2002. 

▸ J. Mercer. Phil. Trans. Roy. Soc. Lond., A209:415, 1909. 

▸ C.C.Chang,C.J.Lin,ACMTransactionsonIntelligentSystemsandTechnology2,27:1 
(2011). Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm 
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