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INTRODUCTION

» We initialise the weights of a neural network or other MVA algorithm
randomly.

» The determination a set of optimal weights requires some heuristic
algorithm and some figure of merit.

» The algorithm is the optimisation method (typically derived from
gradient descent).

» The figure of merit is called the loss or cost function and can take
many forms.

» The optimisation process for machine learning algorithms is similar to
optimisation of a X2 or -InL in a fit where one minimises the X2 or -InL
as the figure of merit, with respect to the model parameters.

o
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HYPERPARAMETER OPTIMISATION

» Models have hyperparameters (HPs) that are required to
fix the response function(®.

» The set of HPs forms a hyperspace.

» The purpose of optimisation is to select a pointin

hyperspace that optimises the performance of the model
using some figure of merit (FOM).

» The figure of merit is called the cost or loss function.

» c.f. least squares regression or a x2 or likelihood fit.

(*) Minimisation problems related to likelihood fitting often split the hyper-parameters into parameters of interest
(e.g. physical quantities) and other nuisance parameters that are not deemed to be interesting. Machine learning

. . . T . 4
model parameters are the equivalent of nuisance parameters in the language of likelihood fits. e.g. see the book by A Bevan WO Queen Mary
Edwards, Likelihood (1992), John Hopkins Uni Press. -

University of London
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HYPERPARAMETER OPTIMISATION

» Consider a perceptron with N inputs.

» This has N+1 HPs: N weights and a bias:

N
y=171 (szﬂfz +9)
1=1
= f(w" z +6)

» For brevity the bias parameter is called a weight from
the perspective of HP optimisation.
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HYPERPARAMETER OPTIMISATION

» Consider a neural network with an N dimensional input feature
space, M perceptrons on the input layer and 1 output perceptron.

» This has M(N+1) + (M+1) HPs.
» For an MLP with one hidden layer of K perceptrons:

» This has M(N+1) + K(M+1) + (K+1) HPs.

» For an MLP with two hidden layers of K and L perceptrons,
respectively:

» This has M(N+1) + K(M+1) + L(K+1) +(L+1) HPs.
» and so on.

A.B ‘g__ Q ueen I\/Iary
Univ
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HYPERPARAMETER OPTIMISATION

» Neural networks have a lot of HPs. Deep networks, especially CNNs can have
millions of HPs to optimise.

» Requires appropriate computing resource.
» Requires appropriately efficient methods for HP optimisation.

» What is acceptable for an optimisation of 10 or 100 HPs will not generally
scale well to a problem with 103-106 HPs.

» The more HPs to determine the more data is required to obtain a generalisable
solution for the HPs.

» By generalisable we mean that the model defined using a set of HPs will have
reproducible behaviour when presented with unseen data.

» When this is not the case we have an overtrained model - one that has
learned statistical fluctuations in our training set.

o
A.Bevan ‘an_‘l Queen Mary

University of London



MULTIVARIATE ANALYSIS AND ITS USE IN HIGH ENERGY PHYSICS: OPTIMISATION 8

HYPERPARAMETER OPTIMISATION: SUPERVISED LEARNING

» The type of machine learning we are using is referred to as
supervised learning.

» We present the algorithm with known (labeled) samples of
data, and optimise the HPs in order to minimise the loss

function.

» The loss function is a function of:
» labels (e.g. signal = +1, background = 0 or -1 depending
on convention/choice of loss function)
» hyper parameters (i.e. weights, biases, etc.)
» activation functions
» architecture of the network (arrangement of perceptrons)

nnnnnnnnnnnnnnnnnn
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HYPERPARAMETER OPTIMISATION: LOSS FUNCTIONS

» There are a number of different types of loss (cost) function
that are commonly used.

» These different figures of merit are measures of how well a

model performs at ensuring the weights provide a
reasonable output response.

» Loss functions can have additional terms added to them

(e.g. weight regularisation for overtraining and for
constructing adversarial networks).

» Three common loss functions are described in the
following.

A evan %Q Queen Mary
Univ

ersity of London
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HYPERPARAMETER OPTIMISATION: LOSS FUNCTIONS

» L2-norm loss:

» This is like a X2 term, but without the error normalisation and
a factor of 1/2.

N :
e=) 5(%’ — ;)
i=1

N = number of examples
yi = Model output for the ith example

ti = True target type for the ith example (label values)

» The L1 norm loss function is as above, without the factor of
1/2 or square.

nnnnnnnnnnnnnnnnnn
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HYPERPARAMETER OPTIMISATION: LOSS FUNCTIONS
» Mean Square Error (MSE) loss:

» Very similar to the L2 norm loss function; just normalise
the L2 norm loss by the number of training examples to
compute an average.

1 N
—_— - —_—- . 2
& = N E :(y’L tl)

1=1

N = number of examples
yi = Model output for the ith example

t; = True target type for the ith example (label values)

nnnnnnnnnnnnnnnnnn
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HYPERPARAMETER OPTIMISATION: LOSS FUNCTIONS

» Cross Entropy:

» This loss function is inspired by the likelihood for
observing either target value P(t|z) = yt(1 — 3)1 7Y

» From the likelihood L of observing the training data set
we can compute the -InL as

e=— Z " Iny"™ + (1 —¢")In(1 — y™)]

n = number of examples

t = target type (0 or 1) depending on example (label values)

y = output prediction of model

nnnnnnnnnnnnnnnnnn
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HYPERPARAMETER OPTIMISATION: GRADIENT DESCENT

» Newtonian gradient descent is a simple concept.

» Guess an initial value for the weight parameter: wy.

y =&

25_‘

205—
155—
lof
st

nnnnnnnnnnnnnnnnnn
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HYPERPARAMETER OPTIMISATION: GRADIENT DESCENT

» Newtonian gradient descent is a simple concept.

» Estimate the gradient at that point (tangent to the curve)

nnnnnnnnnnnnnnnnnn



MULTIVARIATE ANALYSIS AND ITS USE IN HIGH ENERGY PHYSICS: OPTIMISATION

15

HYPERPARAMETER OPTIMISATION: GRADIENT DESCENT

» Newtonian gradient descent is a simple concept.

» Compute Aw such that Ay is negative (to move toward

the minimum)

a is the learning rate: a small positive number

dy
Choose AW = —a—= to ensure Ay is always negative.

dw

nnnnnnnnnnnnnnnnnn
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HYPERPARAMETER OPTIMISATION: GRADIENT DESCENT

» Newtonian gradient descent is a simple concept.

» Compute a new weight value: w1 = wo+Aw
y =&

25_‘

20f
155—
lof
st

......... -"""A"W

-4 -2 " 2 Wi Wo

a is the learning rate: a small positive number

dy

Choose AW = —a—= to ensure Ay is always negative. .
dw A.Bevan ‘an_"l Queen Mary

nnnnnnnnnnnnnnnnnn



MULTIVARIATE ANALYSIS AND ITS USE IN HIGH ENERGY PHYSICS: OPTIMISATION 17

HYPERPARAMETER OPTIMISATION: GRADIENT DESCENT

» Newtonian gradient descent is a simple concept.

» Repeat until some convergence criteria is satisfied.
y =€

25_‘

20}

15F

......... W
-4 -2 Wh W2 Wi Wo
a is the learning rate: a small positive number
dy . .
Choose AW = —a—= to ensure Ay is always negative.

o
dw A.Bevan ‘aQ:._"l Queen Mary
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HYPERPARAMETER OPTIMISATION: GRADIENT DESCENT

» We can extend this from a one parameter optimisation to a
2 parameter one, and follow the same principles, now in 2D.

V-5

° ° 5 B ° ° ° °
» The successive points wi+1 can be visualised a bit like a ball
rolling down a concave hill into the region of the minimum.

nnnnnnnnnnnnnnnnnn
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HYPERPARAMETER OPTIMISATION: GRADIENT DESCENT

» In general for an n-dimensional hyperspace of hyper
parameters we can follow the same brute force approach

using:
Ay = AwVy

NI
N dwlﬂ;

» where

Wit1 = W; + Aw

= w; —aVy
= W; — & | 4y
- dwlﬂ;

nnnnnnnnnnnnnnnnnn
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HYPERPARAMETER OPTIMISATION: BACK PROPAGATION

» The delta-rule or back propagation method is used for
NNs to determine the weights; based on gradient descent.

» For a regularisation problem* we use the L2 norm loss
function (with or without the factor of 1/2):

N 1 yi is the model output for example x;
_ . 4+ )\2
<= Z 2 (yz t”/) t is the corresponding label for the
1=1 ith example

» We can compute the derivative of the £ with respect to the

Welg htS as. 852- 857; Derivatives depend on the
and activation function(s) used
5’w 89 in the model y(x)

o
A.Bevan ‘an_‘l Queen Mary

*Either this or cross entropy are used for the classification problems. University of London
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HYPERPARAMETER OPTIMISATION: BACK PROPAGATION

» The parameters w and O are updated using:

N
r+1 . r 88@
w = — E :
Ow where a is the small
1=1 positive learning rate
N
97“—|—1 97“ 86@
=0 — « E
— 00
1=1

» The derivatives can be re-written in terms of the “errors” on the weights, and the
errors on w and O can be related to each other.

» Back propagation involves:
» A forward pass where weights are fixed and the model predictions are made*.

» This is followed by the backward pass where the errors on the bias parameters
are computed and used to determine the errors on the weights. These in turn
are then used to update the HPs from epoch r to epoch r+1.

| YaY,
*Weights are randomly initialised for the whole network. A-sevan WM Quieen Mary

University of London
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HYPERPARAMETER OPTIMISATION

» Consider the examples of an MLP to approximate the
function f(x) = x2and how the convergence depends on
the learning rate.

Network Response Function Network Response Function
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'-l'”q -~ 1000000 | |
0 1 Il 0 Il 1 1 |
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch

A small learning rate means the convergence
takes much longer (a x10 reduction in the
learning rate will require a x10 increase in
optimisation steps)

This example uses an L2 loss function and is a neural network with 1 input, a single layer of 50 nodes and 1 output; implemented in TensorFlow.

Too large a learning rate and the optimisation
does not always lead to an improved cost; the
small change approximation breaks down. .
A.Bevan WQ Queen Mary

University of London
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HYPERPARAMETER OPTIMISATION

» Consider the examples of an MLP to approximate the
function f(x) = x2and how the convergence depends on

the learning rate.

Network Response Function

100

= sqrt(x)

f(x)

2000000 T T X

1500000 }- CI=O.1 i

(%}
8 1000000 |

500000 °
o™

0 M“‘L

0 20 40 60 80 100
epoch

Too large a learning rate and the optimisation
does not always lead to an improved cost; the
small change approximation breaks down.

This example uses an L2 loss function and is a neural network with 1 input, a single layer of 50 nodes and 1 output; implemented in TensorFlow.

100 Network Response Function

80 |
X 60
5
@ 4o}
= 20}
ok
_20 |
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A small learning rate means the convergence
takes much longer (a x10 reduction in the
learning rate will require a x10 increase in

optimisation steps) A Bevan W) Queen Mary

University of London
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HYPERPARAMETER OPTIMISATION: STOCHASTIC LEARNING!

Advantages of Stochastic Learning
1. Stochastic learning is usually much faster than batch learning.
2. Stochastic learning also often results in better solutions.
3. Stochastic learning can be used for tracking changes.

» Data are inherently noisy.
» Individual training examples can be used to estimate the gradient.

» Training examples tend to cluster, so processing a batch of training
data, one example at a time results in sampling the ensemble in such
a way to have faster optimisation performance.

» Noise in the data can help the optimisation algorithm avoid getting
locked into local minima.

» Often results in better optimisation performance than batch learning.

b
[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 a.Bevan W Queen Mary

University of London



http://yann.lecun.com/exdb/publis/index.html#lecun-98b

MULTIVARIATE ANALYSIS AND ITS USE IN HIGH ENERGY PHYSICS: OPTIMISATION 25

HYPERPARAMETER OPTIMISATION: BATCH LEARNING!

Advantages of Batch Learning
1. Conditions of convergence are well understood.
2. Many acceleration techniques (e.g. conjugate gradient) only op-
erate in batch learning.
3. Theoretical analysis of the weight dynamics and convergence
rates are simpler.

» Data are inherently noisy.

» Can use a sample of training data to estimate the gradient for minimisation
(see later) to minimise the effect of this noise.

» The sample of data is used to obtain a better estimate the gradient
» This is referred to as batch learning.

» Can use mini-batches of data to speed up optimisation, which is

motivated by the observation that for many problems there are clusters of
similar training examples.

b
[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 a.Bevan W Queen Mary

University of London
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HYPERPARAMETER OPTIMISATION: BATCH LEARNING

» Returning to the example f(x) = x2;
» optimising on 1/4 of the data at a time (4 batches) leads to accelerated

optimisation relative to optimising on all the data each epoch.

Network Response Function

Network Response Function 100

100

f(x) = sqrt(x)
f(x) = sqrt(x)

loss

200 400 600 800 1000
epoch

200 400 600 800 1000
epoch

Training with all the data and a learning rate Batch training (4 batches) with all the data
of 0.01. and a learning rate of 0.01.

o
A.Bevan ‘an_"l Queen Mary

This example uses an L2 loss function and is a neural network with 1 input, a single layer of 50 nodes and 1 output; implemented in TensorFlow. University of London



MULTIVARIATE ANALYSIS AND ITS USE IN HIGH ENERGY PHYSICS: OPTIMISATION 27

GRADIENT DESCENT: REFLECTION

» For a problem with a parabolic minimum and an appropriate
learning rate, q, to fix the step size, we can guarantee

convergence to a sensible minimum in some number of steps.

» If we translate the distribution to a fixed scale, then all of a
sudden we can predict how many steps it will take to
converge to the minimum from some distance away from it
for a given a.

» If the problem hyperspace is not parabolic, this becomes
more complicated.

b
[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 a.Bevan W Queen Mary

University of London
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GRADIENT DESCENT: REFLECTION

» Based on the underlying nature of the gradient descent optimisation algorithm

family, being derived to optimise a parabolic distribution, ideally we want to try
and standardise the input distributions to a neural network.

» Use a unit Gaussian as a standard e.g.:
» maps x to x' = (x-p)/o;
» Scale x’ to the range [-1, 1].

» The transformed data inputs will be scale invariant in the sense that HPs such
as the learning rate will be come general, rather than problem (and therefore
scale) dependent.

» If we don't do this the optimisation algorithm will work, but it may take
longer to converge to the minimum, and could be more susceptible to
divergent behaviour.

b
[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 a.Bevan W Queen Mary

University of London
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OVERTRAINING

» Data are noisy.

» Optimisation can result in learning the noise in the training data.

» Overtraining is the term given to learning the noise, and this can be
mitigated in a number of different ways:

» Using more training data (not always possible).

» Checking against different data sets to identify the onset of learning

noise.
» Changing the network configuration when training (dropout).
» Weight regularisation (large weights are penalised in the cost).

» None of these methods guarantees that you avoid over training.

o
A.Bevan ‘an_‘l Queen Mary

University of London
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OVERTRAINING

» A model is over fitted if the HPs that have been
determined are tuned to the statistical fluctuations in the
data set.

» Simple illustration of the problem:

- 1

30 training examples ' The decision boundary selected here

,h does a good job of separating the red

and blue dots.

0.9

0.8
0.7
0.6

05 Boundaries like this can be obtained by

training models on limited data
samples. The accuracies can be
impressive.
I
' But would the performance be as good |
with a new, or a larger data sample?

0.4
0.3
0.2

0.1

o
A.Bevan ‘an_" Queen Mary

University of London
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OVERTRAINING

» A modelis over fitted if the HPs that have been

determined are tuned to the statistical fluctuations in the

data set.

» Simple illustration of the problem:

PR |
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j, Increasing to 1000 training examples we can se
Il This illustrates the kind of problem encountered when we overfit HPs of a model.
| _ _ _ ,
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— = == = — I _ — _

e the boundary doesn’t do as well.

Queen Mary
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OVERTRAINING: TRAINING VALIDATION

» One way to avoid tuning to statistical fluctuations in the data is to
impose a training convergence criteria based on a data sample
independent from the training set: a validation sample.

» Use the cost evaluated for the training and validation samples to
check to see if the HPs are over trained.

» If both samples have similar cost then the model response function
is similar on two statistically independent samples.

» If the samples are large enough then one could reasonably assume
that the response function would then be general when applied to
an unseen data sample.

» “large enough” is a model and problem dependent constraint.

o
A.Bevan ‘an_‘l Queen Mary

University of London
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OVERTRAINING: TRAINING VALIDATION

» Training convergence criteria that could be used:
» Terminate training after Nepochs
» Cost comparison:
» Evaluate the performance on the training and validation sets.

» Compare the two and place some threshold on the difference
ACOSt < Scost

» Terminate the training when the gradient of the cost function with
respect to the weights is below some threshold.

» Terminate the training when the Acost starts to increase for the
validation sample.

o
A.Bevan ‘an_‘l Queen Mary

University of London
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OVERTRAINING: TRAINING VALIDATION: EXAMPLE HIGGS KAGGLE DATA

» This example shows the Higgs Kaggle (H—71) with an
overtrained neural network.

500 . . : : 0.80
Hyper parameters are not
optimal, but test and train
450 . . 0.75F
samples give similar
2
performance. 0
400 g 070}
The test sample (green) has a b
[ =
consistently high cost value °
9 i relative to the train sample (blue). - = !
g 0 ple (blue) £ 0.0 65% accuracy
c attained before
> o .
00T g 000 overtraining starts
0
<
250 - 0.55}
Overtrained network Overtrained network
j > ' >
200 L L L 1 0.50 | | | |
0 200 400 600 800 1000 0 200 400 600 800 1000
Epoch Epoch

This example uses all features of the data set, but only 2000 test/train events with a learning rate of 0.001 and dropout is not
being used. The network has a single layer with 256 nodes and a single output to classify if a given event is signal or background
There is no batch training used for this example.

o
A.Bevan \an_‘l Queen Mary
See https: rc.gmul.ac.uk/~bevan/teaching/PML.html for example code for this problem University of London
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OVERTRAINING: TRAINING VALIDATION: EXAMPLE HIGGS KAGGLE DATA

» Continuing to train an over-trained network does not
resolve the issue - the network remains over-trained.

500 T |l |l |l 1'0 Ll
65% accuracy
4501 0o attained before
400 8 overtraining starts
w
350 3 o8}
e}
&
" 300 =
§ ‘e 0.7}
250 | £
[
(o]
200} 2 0.6
o
o
150} <
0.5}
100 Overtrained network . Overtrained network
i > I P
50 | 1 1 1 0.4 1 1 1 1
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Epoch Epoch

In this case the level of overtraining continues to increase and the difference in the performance of the train and test samples in
terms of accuracy increases. After 10000 training cycles we have an accuracy of over 93% for the train sample, but less than 70%
for the test sample. This is not a good configuration to use on unseen data as the outcome is unpredictable.

For this example we should terminate after about 200 epochs, while the test/train performance remain similar and have an

accuracy of 70%. Other network configurations may be better. 4
A.Bevan ‘an_" Queen Mary

See https://pprc.gmul.ac.uk/~bevan/teaching/PML.html for example code for this problem University of London
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OVERTRAINING: DROPOUT FOR DEEP NETWORKS

» A pragmatic way to mitigate overfitting is to compromise the model
randomly in different epochs of the training by removing units from the
network.

| Dropout is used
during training;

when evaluating
predictions with
'the validation or
unseen data the
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full network of Fig. E
(a) is used. |

(a) Standard Neural Net (b) After applying dropout.
» That way the whole model will be effectively trained on a sub-sample of the
data in the hope that the effect of statistical fluctuations will be limited.

» This does not remove the possibility that a model is overtrained, as with the
previous discussion HP generalisation is promoted by using this method.

Srivastava et al., J. Machine Learning Research 15 (2014) 1929-1958 A.Bevan ‘a@_z’ Queen Mary

University of London
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OVERTRAINING: DROPOUT FOR DEEP NETWORKS

» A variety of architectures has been explored with different training samples
(see Ref [1] for details).

30 T r
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. . . . 25.
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» Dropout can be detrimental for small training samples, however in general
the results show that dropout is beneficial.

» For deep networks or typical training samples O(500) examples or more this
technique is expected to be beneficial.

[11 Srivastava et al., J. Machine Learning Research 15 (2014) 1929-1958 A.Bevan ‘a@_s’ Queen Mary

University of London



https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
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OVERTRAINING: DROPOUT: EXAMPLE HIGGS KAGGLE DATA

» Changing the drop out keep probability from 0.9 to 0.7 stops the
network becoming overtrained in the first 1000 epochs.

500 0.75

0.70
450 -

e
o
a

400 -

~73% accuracy
attained without

Cost

overtraining for
1000 epochs, keep
probability of 0.7
and a learning rate
of 0.001

350+

o
ul
v

Accuracy on training and test sets
o
(o)}
o

300+
0.50

250 1 1 1 1 0.45 1 1 1 1
0 200 400 600 800 1000 0 200 400 600 800 1000

Epoch Epoch

» A better accuracy is attained for this network using dropout; above 70%.

o
A.Bevan ‘an_‘l Queen Mary
See https: rc.gmul.ac.uk/~bevan/teaching/PML.html for example code for this problem University of London


https://pprc.qmul.ac.uk/~bevan/teaching/PML.html
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OVERTRAINING: WEIGHT REGULARISATION FOR NEURAL NETWORKS

» Weight regularisation involves adding a penalty term to the loss
function used to optimise the HPs of a network.

» This term is based on the sum of the weights w; (including bias
parameters) in the network and takes the form:
A Z Wi This is the L1 norm regularisation term.
1=Vwerghts

» The rationale is to add an additional cost term to the optimisation
coming from the complexity of the network.

» The performance of the network will vary as a function of A.

» To optimise a network using weight regularisation it will have to be
trained a number of times in order to identify the value corresponding
to the min(cost) from the set of trained solutions.

See Ch. 9 of Bishop’s Neural Network for Pattern Recognition v WO Queen Mar
Loshchilov, Frank Hutter, arXiv:1711.05101 ' === niversityof Londen y



https://arxiv.org/abs/1711.05101
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OVERTRAINING: WEIGHT REGULARISATION FOR NEURAL NETWORKS

» Weight regularisation involves adding a penalty term to the loss
function used to optimise the HPs of a network.

» This term is based on the sum of the weights w; (including bias
parameters) in the network and takes the form:

\ E : w2 This variant is the L2 norm
t regularisation term; also know as

1=V, weights weight decay regularisation.
» The rationale is to add an additional cost term to the optimisation
coming from the complexity of the network.

» The performance of the network will vary as a function of A.

» To optimise a network using weight regularisation it will have to be
trained a number of times in order to identify the value corresponding
to the min(cost) from the set of trained solutions.

See Ch. 9 of Bishop’s Neural Network for Pattern Recognition v WO Queen Mar
Loshchilov, Frank Hutter, arXiv:1711.05101 ' === niversityof Londen y



https://arxiv.org/abs/1711.05101
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OVERTRAINING: WEIGHT REGULARISATION FOR NEURAL NETWORKS

» For example we can consider extending an MSE cost function
to allow for weight regularisation. The MSE cost is given by:

| N
= - i — i)’
e =~ ;(y )
» To allow for regularisation we add the sum of weights term:
1 = 2 2
5:N2(yi—ti) +A DY w;
1=1 1=V, wetghts

» This is a simple modification to make to the NN training
process that adds a penalty for the inclusion of non-zero
weights in the network.

See Ch. 9 of Bishop’s Neural Network for Pattern Recognition
Loshchilov, Frank Hutter, arXiv:1711.05100¢ T Universityof London



https://arxiv.org/abs/1711.05101
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OVERTRAINING: WEIGHT REGULARISATION FOR NEURAL NETWORKS

» The optimisation process needs to be run for each value of A in order to choose the
best (least cost) solution that is not overtrained.

» This means we have to train the network many times, with different values of A
when using regularisation. e.g. for the Kaggle example with 1000 epochs we have:

A cost: train / test accuracy: train / test
No regularisation;
best cost == 0.0 284.9 /291.2 0.711/0.710
0.1 622.9 / 632.2 0.722/0.711
"Best” performance ===l (.2 781.5/791.8 0.725/0.714
for this sampling of 0.3 907.3/915.8 0.717/0.710
A; but similar outputs
obtained for a range 1.0 1987.7 / 1986.8 0.714/0.712
of trainings 2.0 3801.1/3795.7 0.651/0.658
10.0 17555/ 17562 0.674/0.666

See Ch. 9 of Bishop’s Neural Network for Pattern Recognition

Loshchilov, Frank Hutter, arXiv:1711.05101

Increasing cost of weights

o
A.Bevan ‘an_"l Queen Mary

University of London
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OVERTRAINING: WEIGHT REGULARISATION FOR NEURAL NETWORKS

» The optimisation process needs to be run for each value of A in order to choose the
best (least cost) solution that is not overtrained.

» This means we have to train the network many times, with different values of A when
using regularisation. e.g. for the Kaggle example with 1000 epochs we have:

4000 ; : ; 0.74

WNM |
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1500

1000 0.67
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cost includes )\ Z w?

500+ 0.66 |-

1=V, weights

1 1 0.65 1 1 |
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 15 2.0

lambda lambda

» Accuracy falls off as lambda increases, but there is little dependence for this example.

See Ch. 9 of Bishop’s Neural Network for Pattern Recognition v WO Queen Mar
Loshchilov, Frank Hutter, arXiv:1711.05101 ' === Universty o Lonon y
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OVER FITTING: CROSS VALIDATION

» An alternative way of thinking about the problem is to assume

that the response function of the model will have some bias and
some variance.

» The bias will be irreducible and mean that the predictions

made will have some systematic effect related to the average
output value.

» The variance will depend on the size of the training sample,
and we would like to know what this is.

We can use cross validation to estimate the prediction error.

Any prediction bias can be measured using control samples.

Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328. \ *J
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010). A-gevan WO Queen Mary

University of London
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OVER FITTING: CROSS VALIDATION

» Application of this concept to machine learning can be
seen via k-fold cross validation and its variants*

» Divide the data sample for training and
validation into k equal sub-samples.

validation

validation

» From these one can prepare k sets of
validation samples and residual training
samples.

validation

validation

validation

» Each set uses all examples; but the
training and validation sub-sets are
distinct.

| *Variants include the extremes of leave 1 out CV and Hold out CV as well as leave p-out CV. These involve reserving 1 example, 50% of
1‘ examples and p examples for testing, and the remainder of data for training, respectively.

Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328. .Y
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010). A-Bevan YN %ﬁgﬁﬂﬂh{'ary
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OVER FITTING: CROSS VALIDATION

» Application of this concept to machine learning can be
seen via k-fold cross validation and its variants*

» One can then train the data on each of the k training
sets, validating the performance Of the network on the validation _
corresponding validation set.
» We can measure the model error on the validation set. - validation _
» The model prediction error is the average error _ validation _

obtained from the k folds on their corresponding

N "
validation sets. ] vaticacon [N
» If desired we could combine the k models to compute _ validation

some average that would have a prediction

performance that is more robust than any of the
individual folds.

— — = — == e ————— =

| *Variants include the extremes of leave 1 out CV and Hold out CV as well as leave p-out CV. These involve reserving 1 example, 50% of

1‘ examples and p examples for testing, and the remainder of data for training, respectively.
P P P g g P y

Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320-328. .Y
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010). A Bevan W Queen Mary

University of London
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OVER FITTING: CROSS VALIDATION

» Application of this concept to machine learning can be
seen via k-fold cross validation and its variants*

ROC-Curve
» The ensemble of response function outputs SVM_Bos
. . . 0.9 ==
will vary in analogy with the spread of a S L 1 SVM_Average
. . . . 0.8 = SVM_Holdout_RBF
Gaussian distribution.

o
N

» This results in family of ROC curves; with a
representative performance that is neither the
best or worst ROC.

o
o)

o
3

o
o

o
w

» The example shown is for a Support Vector
Machine, with the best average and holdout
ROC curves to indicate some sense of spread.

o
N

N IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|I T

(False negative rate) Backgr rejection (1-eff)

0.5 0.6 0.7 0.8 0.9 1
(True positive rate) Signal eff

o

| *Varlants include the extremes of leave 1 out CV and Hold out CV as well as leave p-out CV These |nvo|ve reserving 1 example 50% of

1‘ examples and p examples for testing, and the remainder of data for training, respectivel
P P P g 9 P y-
L - B

Geisser, S. (1975) The predlctlve sample reuse method with applications. J Amer. Statlst Assoc 70:320- 328
For a review of cross validation see: S. Arlot and A. Celisse, Statistics Surveys Vol. 4 4079 (2010).

o
A.Bevan ‘an_" Queen Mary

University of London
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SUMMARY

» Hyper-parameter optimisation does not guarantee robust solution.

» Minimisation of different cost functions will allow us to determine
"optimial” hyper-parameters for our model.

» When the model starts to learn statistical fluctuations in the training
sample we should stop the training to avoid overtraining the data
(i.e. to avoid learning the statistical fluctuations in a given sample).

» Methods exist to mitigate overtraining, however none of them
guarantee a generalised solution that is robust from overtraining
[dropout, regularisation, cross validation].

» The only exception to this is to supply an effectively infinite
sample of training data for a given problem.

o
A.Bevan ‘an_‘l Queen Mary

University of London
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SUGGESTED READING (HEP RELATED)

» There is not much HEP-specific literature regarding HPs
optimisation.

» Minuit is used to optimise parameters in TMVA along
with other algorithms. See the Minuit user guide and
TMVA for more details. This is based on the DFP

method of variable metric minimisation.

» Logarithmic grid searches are also discussed for specific
algorithms with a few HPs (see SVM notes).

nnnnnnnnnnnnnnnnnn


https://root.cern.ch/tmva
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SUGGESTED READING (NON-HEP)

» There are a few backup slides on the ADAM optimiser that performs well with a number of
deep learning problems that you might wish to look at.

» In addition the following books discuss the issue of parameter optimisation:
» Bishop, Neural Networks for Pattern Recognition, Oxford University Press (2013)

» Cristianini and Shawe-Taylor, Support Vector Machines and other kernel-based learning
methods, Cambridge University Press (2014)

» Goodfellow, Deep Learning, MIT Press (2016)

» MacKay's Information Theory, Inference and Learning algorithms, Cambridge University
Press (2011)

o
A.Bevan ‘an_‘l Queen Mary

University of London
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APPENDIX

» The following slides contain additional information that
may be of interest.

o
A.Bevan ‘an_‘l Queen Mary

University of London
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MULTIPLE MINIMA

» Often more complication hyperspace optimisation
problems are encountered, where there are multiple
minima.

The gradient descent
minimisation algorithm is based
on the assumption that there is
a single minimum to be found.

In reality there are often
multiple minima.

Sometimes the minima are
degenerate, or near
degenerate.

How do we know we have
converged on the global
minimum?

One of several minima
A.Bevan %Q) Queen Mary

niversity of London

c
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MULTIPLE MINIMA

» Often more complication hyperspace optimisation
problems are encountered, where there are multiple
minima.

The gradient descent
minimisation algorithm is based
on the assumption that there is
a single minimum to be found.

In reality there are often
multiple minima.

Sometimes the minima are
degenerate, or near
degenerate.

How do we know we have
converged on the global
minimum?

A.Bevan %Q) Queen Mary

niversity of London
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GRID SEARCHES

» Just as we can scan through a parameter in order to minimise a likelihood
ratio, we can scan through a HP to observe how the loss function changes.

» For simple models we can construct a 2D grid of points in m and c.

» Evaluating the loss function for each point in the 2D sample space we can
construct a grid from which to select the minimum value.

» The assumption here is that our grid spacing is sufficient for the purpose of
optimising the problem.

This type of parameter
C oA search is often used for

O © 0 0 00 © O support vector machine HPs

O 06060 00O (kernel function parameters
and cost).

O 000600 O

O © © 0 0 0 O This method does not scale

O 6 06 6 60 0 O to large numbers of
parameters.

O 0006 00 C”n

o
A.Bevan ‘an_‘l Queen Mary
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GRID SEARCHES

» e.g.consider a linear regression study optimising the parameters for the
model y=mx+c

» The loss function for this problem results in a “valley” as m and c are anti-
correlated parameters in this 2D hyperspace.
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» The contours of the loss function show a minimum, but this is selected from a
discrete grid of points (need to ensure grid spacing is sufficient for your

needs).
L
A. Bevan ‘E;Q‘:'al Queeﬂ |\/|al’y

University of London
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ADAM OPTIMISER

» This is a stochastic gradient descent algorithm.

» Consider a model f(0) that is differentiable with respect to the HPs 0 so that:
» the gradient g = Vf{(0:.1) can be computed.
» tisthe training epoch
» m;and v; are biased values of the first and second moment
» my-hat and vi-hat are bias corrected estimator of the moments

» Some initial guess for the HP is taken: By, and the HPs for a given epoch
are denoted by 0;

» aisthe step size

» 31 and 32 are exponential decay rates of moving averages.

o
. . . . a.Bevan WQ Queen Mary
Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015 University of London



https://arxiv.org/abs/1412.6980
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ADAM OPTIMISER

» ADAptive Moment estimation based on gradient descent.

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; © g¢. Good default settings for the tested machine learning problems are o = 0.001,
B1 = 0.9, B = 0.999 and € = 10~%. All operations on vectors are element-wise. With ﬁ{ and 55
we denote 3 and 35 to the power .

Require: «: Stepsize
Require: 1,5 € [0,1): Exponential decay rates for the moment estimates
Require: f(f): Stochastic objective function with parameters ¢
Require: 6,: Initial parameter vector
mo < 0 (Initialize 1% moment vector)
vo + 0 (Initialize 2" moment vector)
t < 0 (Initialize timestep)
while 0; not converged do
t<—t+1
gt < Vo fi(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my <— B -my—1 + (1 — B1) - g+ (Update biased first moment estimate)
vy < B2 vi—1 + (1 — B2) - g? (Update biased second raw moment estimate)
my < my/(1 — B%) (Compute bias-corrected first moment estimate)
vy < vy /(1 — B%) (Compute bias-corrected second raw moment estimate)
0; < 0,_1 — a-my/(v/0; + €) (Update parameters)
end while
return 6; (Resulting parameters)

o
. . . . a.Bevan ¥Q Queen Mary
Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015 University of London
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ADAM OPTIMISER

» Benchmarking performance using MNIST and CFAR10 data
indicates that Adam with dropout minimises the loss function
compared with other optimisers tested.

107 MNIST Multilayer Neural Network + dropout CIFAR10 ConvNet
: [~ AdaGrad el [~ AdaGrad
—  RMSProp : : : — AdaGrad+dropout
— SGDNesterov —— SGDNesterov
— AdaDelta Y - o L L —— SGDNesterov+dropout| |
—  Adam : : : —  Adam
; —— Adam+dropout
. 10° b ........... R s T A
§ § . . . . . 5 . P
2 g
£ €107}
s g
1l e 1 S [ I SR : : : : : : : :
10-2 L . AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA .......... _ AAAAAAAAAA
10 o
: : : 10 ; ; ; ; i i i i
0 50 100 150 200 0 5 10 15 20 25 30 35 40 45

iterations over entire dataset iterations over entire dataset

» Faster drop off in cost, and lower overall cost obtained.

o
. . . . a.Bevan WQ Queen Mary
Kingma and Ba, Proc. 3rd Int Conf. Learning Representations, San Diego, 2015 University of London
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DAVIDON-FLETCHER-POWELL

» This is a variable metric minimisation algorithm (1959, 1963)

is degcribed Ta) Wikipedia as: %Thé DFP formula is quite effective, but tWas soon
| superseded by the BFGS formula, which is its dual

(interchanging the roles of y and s).

» This is used in high energy physics via the package MINUIT
(FORTRAN) and Minuit2 (C++) implementations.

» The standard tools that are used for data analysis in HEP
have these implementations available, and while the
algorithm may no longer be optimal, it is still deemed
good enough by many for the optimisation tasks.

» Robust / reliable minimisation.
» Underlying method derived assuming parabolic minima

» Understood and trusted by the HEP community.
https://ntrs.nasa.gov/search.jsp?R=19760017876 n \‘@ Queen Mar
https://www.osti.gov/servlets/purl/4222000 | == Universtyof London Y


https://en.wikipedia.org/wiki/BFGS_method
https://ntrs.nasa.gov/search.jsp?R=19760017876
https://www.osti.gov/servlets/purl/4222000
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DAVIDON-FLETCHER-POWELL

» This is a variable metric minimisation algorithm (1959, 1963) is

described in Wikipedia as. fr The DFP formula is quite effective, but |t was soon

| superseded by the BFGS formula, which is its dual
(mterchangmg the roles of y and s)

» This is used in high energy physics via the package MINUIT
(FORTRAN) and Minuit2 (C++) implementations.

—— ==

1‘ ThIS is mentloned only because it is the dominant algorithm used in partlcle

| physics at this time.
Almost all minimisation problems are solved using this algorithm, where the
dominant use is for maximum likelihood and x2 fit minimisation problems.

The number of HPs required to solve those problems is small (up to a few
hundred) in comparison with the numbers required for neural networks (esp.
deep learning problems).

|
If you don’t (intend to) work in this field, you can now forget you heard about
this algorlthm

e

https://ntrs.nasa.gov/search.jsp?R=1976001 787 o s ‘_@ Queen Mary
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