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INTRODUCTION

» Neural networks are widely used machine learning
algorithms.

» Recent developments in computing have led to “deep
learning” applications of neural networks, which | will
cover later on once we have gone over the groundwork for
more traditional perceptron and multilayer perceptron
approaches.

» Some results using these algorithms will be shown at the
end of the slides.

o
A.Bevan ‘an_‘l Queen Mary

University of London
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PERCEPTRONS

» Rosenblatt!! coined the concept of a perceptron as a probabilistic model for

information storage and organisation in the brain.

» Origins in trying to understand how information from the retina is

processed . Simplified view of Fig 1 from Rosenblatt’s paper.
Projection R
' o R Responses
Retina (response 2 P
function) R3

» Start with inputs from different cells.

» Process those data: "if the sum of excitatory or inhibitory impulse
intensities is either equal to or greater than the threshold (0) ... then
the A unit fires”.

» This is an all or nothing response-based system.

L
evan R
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. . ) E%ggﬁrlnmary
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PERCEPTRONS

» This picture can be generalised as follows:

» Take some number, n, of input features

» Compute the sum of each of the features multiplied by
some factor assigned to it to indicate the importance of
that information.

» Compare the sum against some reference threshold.

» Give a positive output above some threshold.

L
evan R
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. . ) E%‘is?ﬁrln'l/n'ary
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PERCEPTRONS

» lllustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).
W1
141 — 0
+ = <
1
WX 2 —

L
evan R
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. . ) %ﬁgﬁﬂmary
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PERCEPTRONS

» lllustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).

>, > 6 Output

w2

L
evan R
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. . ) E%ggﬁrlnmary
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PERCEPTRONS

» lllustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).
If wixy + woxy >0
Output = 1
else
Output =0

L
evan R
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. . ) %‘ﬁﬁﬂn'.,\fary
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PERCEPTRONS

» lllustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).

If wixy + woxy >0

This is called a binary

Output =1 | activation function or
perceptron.

else J It is another application of i‘
'the Heavyside function H(x). |

(5.

Output =0

L
evan R
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. . ) %‘ﬁﬁﬂn'.,\fary
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PERCEPTRONS

» lllustrative example:

» Decision is made on x»

» Output value is either
1 or 0 as some f(x1, x2)
that depends on the
values of wq, w» and 6.

L
evan R
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. . ) Er%\ggyemrllnl(l{llary
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PERCEPTRONS I particle physics we often use machine

learning to suppress background. Here
y=1 corresponds to signal and y=0
w1 =0 corresponds to background.

» lllustrative example:

» Decision is made on x»

» Output value is either
1 or 0 as some f(x1, x2)
that depends on the
values of wq, w» and 6.

L
evan R
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. . L Er%\ggyemrllnld\o{llary
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PERCEPTRONS

» lllustrative examples:

L=

Baseline for comparison,
decision only on value of x |

' Rotate decision
plane in (x1, x2)

e e e e e e

[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958.

0 =0.5

i
I

Shift decision plane |
away from origin |

University of London
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PERCEPTRONS

» lllustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the
perceptron is to give an output (value = 1) or not (value

= 0).

» We can generalise the problem to N quantities as
N
y=1r Z w;x; + 0
i=1

= f(w'z +6)

L
evan R
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. . ) Eﬁﬁﬁﬂnﬁﬂary



MULTIVARIATE ANALYSIS AND ITS USE IN HIGH ENERGY PHYSICS: NEURAL NETWORKS 14

PERCEPTRONS

» lllustrative example:

» Consider a measurement of two quantities x;, and xo.

» Based on these measurements we determine if the

perceptron is to give an output (value = 1) or not (value
= 0).

» We can generalise the problem to N quantities as

' The argument is |
just the same
functional form §
of Fisher’s |
discriminant.

N
y=11 sz‘%-F@
i=1

= f(w z +0)

o
evan “ ‘l
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A-Bevan W Queen Mary

University of London



MULTIVARIATE ANALYSIS AND ITS USE IN HIGH ENERGY PHYSICS: NEURAL NETWORKS 15

PERCEPTRONS

» The problem of determining the weights remains (we will
discuss optimisation later on).

» For now assume that we can use some heuristic to choose
weights that are deemed to be “optimal” for the task of
providing a response given some input data example.

o
evan “ ‘l
[1] F. Rosenblatt, Psych. Rev. 65 p386-408, 1958. A-Bevan W Queen Mary

University of London
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ACTIVATION FUNCTIONS

» The perceptron (binary activation function of Rosenblatt) is
just one type of activation function.

» This gives an all or nothing response.

» It can be useful to provide an output that is continuous
between these two extremes.

» For that we require additional forms of activation
function.

&
A.Bevan ‘a;_" Queen I\/Iary
Univ

ersity of London
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ACTIVATION FUNCTIONS: LOGISTIC (OR SIGMOID)

» A common activation function used in neural networks:

1
1+ 6wT:c—|—9

1
1+ elwiz1twaza+0)

nnnnnnnnnnnnnnnnnn
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ACTIVATION FUNCTIONS: LOGISTIC (OR SIGMOID) e

» A common activation function used in neural networks:

| Baseline for comparison,

| —— e | rotate "decision
ii boundary” in (x1, x2)

——— ———— — =

decision only on value of x2 | —e
- e ——— A.Bevan ‘a;Q_ﬁ.l

. __

Queen Mary

University of London
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ACTIVATION FUNCTIONS: HYPERBOLIC TANGENT

» A common activation function used in neural networks:

y = tanh(w' = + 0)
= tanh(wix1 + woxs + 6)

(Often used with 6 = 0)

nnnnnnnnnnnnnnnnnn
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ACTIVATION FUNCTIONS: HYPERBOLIC TANGENT tenb(wra: + woa: + )

» A common activation function used in neural networks:

1.00
0.95
1.0 y0.90
0.85
0.80

W1—1

| Offset (vertically
zero using ©

rotate “decision
boundary” in (x1, x2

—===

| Baseline for comparison,
decision only on value of x; |

— - - —— — _

A.Bevan WO Queen Mary

University of London
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ACTIVATION FUNCTIONS: RELU

» The Rectified Linear Unit activation function is commonly
used for CNNs. This is given by a conditional: 4

» f(x<0)y=0 /

0 X

» otherwisey = x

nnnnnnnnnnnnnnnnnn
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ACTIVATION FUNCTIONS: RELU

» The Rectified Linear Unit activation function is commonly
used for CNNs. This is given by a conditional: |

>

» f(x<0)y=0

» otherwisey = x

-1.0

1.0

wi=1wy=0 wi=1 wy=1 wi=1,wy,=0.5
Importance of features in the perceptron still *
P . . P . P A. Bevan ‘EQQ_‘l Queen Mary
depend on weights as illustrated in these plots. University of London
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ACTIVATION FUNCTIONS: PRELU VARIANT

» The RelLU activation function can be modified to avoid gradient singularities.

A

» This is the PReLU or Leaky RelU activation function y

» If (x <0)y=a*x

» otherwisey = x X
» Collectively we can write the (P)ReLU activation function as
f(z) = max(0,x) + amin(0, x)

» Can be used effectively for deep convolutional neural networks (CNNs)
(more than 8 convolution layers), whereas the ReLU activation function can
have convergence issues for such a configuration!2l,

» If aissmall (0.01)itis referred to as a leaky ReLU functionl1l.

['1 Maas, Hannun, Ng, ICML201 3. N
[21 He, Zhang, Ren and Sun, arXiv:1502.01852 A.Bevan %Q Queen Mary

University of London



https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852
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ACTIVATION FUNCTIONS: RELU

» Performs better than a sigmoid for a number of
applications!1l.

» Weights for a relu are typically initialised with a
truncated normal, OK for shallow CNNs, but there are
convergence issues with deep CNNs when using this
initialisation approachl'l.

» Other initialisation schemes have been proposed to

avoid this issue for deep CNNs (more than 8 conv layers)
as discussed in Ref [2].

[ Maas, Hannun, Ng, ICML201 3.
[21 He, Zhang, Ren and Sun, arXiv:1502.01852

&
A.Bevan ‘a;_" Queen I\/Iary
Univ

ersity of London


https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852
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ACTIVATION FUNCTIONS: RELU

» N.B. Gradient descent optimisation algorithms will not
change the weights for an activation function if the initial
weight is set to zero.

» This is why a truncated normal is used for initialisation,
rather than a Gaussian that has xg[-oo, o].

y y
0.5 r 0.5 r

0.4}

1 6_(53—,“)2/202 0.35—

0.4+

[1] Maas, Hannun, Ng, ICML2013. -
' ! ' .Bevan ‘&Q‘b’ Queen Mar
(21 He, Zhangl Ren and Sun, arXiv:1502.01852 AE = University of London y


https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852
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ACTIVATION FUNCTIONS: RELU

» N.B. Gradient descent optimisation algorithms will not
change the weights for an activation function if the initial
weight is set to zero.

» This is why a truncated normal is used for initialisation,
rather than a Gaussian that has xg[-oo, o].

05 .3 Typical default values for
: [ the truncated normal are:

u=0.0

o=1.0

0.4+ 0.4}

1 6_(53—,“)2/202 0.3%—
o\ 2 '

0.2f

E— 01

[1] Maas, Hannun, Ng, ICML2013. -
' ! ' .Bevan ‘&Q‘b’ Queen Mar
(21 He, Zhangl Ren and Sun, arXiv:1502.01852 AE = University of London y


https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1502.01852
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ACTIVATION FUNCTIONS: DATA PREPARATION

» Input features are arbitrary; whereas activation functions have a
standardised input domain of [-1, 1] or [0, 1].

» Limits the range with which we have to adjust hyper-
parameters to find an optimal solution.

» Avoids large or small hyper-parameters.

» Other algorithms have more stringent requirements for data-
preprocessing when being fed into them.

» All these points indicate that we need to prepare data
appropriately before feeding it into a perceptron, and
hence network.

o
A.Bevan ‘5;_4 ueen Mary

University of London
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ACTIVATION FUNCTIONS: DATA PREPARATION

» Input features are arbitrary; whereas activation functions have a standardised input domain
of [-1,1] or [0, 1].

» We can map our input feature space onto a standardised domain that matches some
range that matches that of the activation function.

» Saves work for the optimiser in determining hyper-parameters.

» Standardises weights to avoid numerical inaccuracies; and set common starting weights.

— — E— — L e

> e.g.
|

O(10-12) to obtain an O(1) result for w; x;.

» Mapping eV +—TeV would translate 1012 eV +— 1TeV, and allow for O(1) weights
leading to an O(1) result for w; x;.

» Comparing weights for features that are standardised allows the user to develop an
intuition as to what the corresponding activation function will look like.

| —

o
A.Bevan ‘an_‘l Queen Mary

University of London
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ACTIVATION FUNCTIONS: DATA PREPARATION

» A good paper to read on data preparation is [1]. This includes the
following suggestions:

» Standardising input features onto [-1, 1] results in faster optimisation
using gradient descent algorithms.

» Shift the features to have a mean value of zero.

» Itis also possible to speed up optimisation by de-correlating input
variables’.

» Having done this one can also scale the features to have a similar
variance.

— e — —_— — — ————— — — |

i De-correlation of features is not essential assuming a sufficiently general optimisation algorithm is being used. The
' rationale is that in general if one can de-correlate features then we just have to minimise the cost as a function of
weights for one feature at a time, rather than being concerned about the dependence of weights on more than one

| feature. So this is a choice made to simplify the minimisation process, and in to speed up that process.

L = — s = = —_——— = = — —_— == — - — —

— ——

—
[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 a.Bevan W Queen Mary

University of London



http://yann.lecun.com/exdb/publis/index.html#lecun-98b
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ACTIVATION FUNCTIONS: DATA PREPARATION

» e.g.

e

[1] LeCun et al., Efficient BackProp, Neural Networks Tricks of the Trade, Springer 1998 (Fig. 3)

1. Shift the distribution to have a zero mean

2. De-correlate input features

A 3. Scale to match covariance of features.

Mean
Cancellation
oe’
o
o0 >
X
KL-
Expansion
A
Covariance
Equalization

&
A. Bevan \QQ;._"[ Queeﬂ |V|al’y

University of London
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ACTIVATION FUNCTIONS: SUMMARY

» All of the activation functions can be described as some
function:

y =fw'x + b)

» e.g.for an N dimensional feature space the argument of
the function is just

wlr = (w1, wa, ... WN)

nnnnnnnnnnnnnnnnnn
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ARTIFICIAL NEURAL NETWORKS (ANNs)

» A ssingle perceptron can be thought of as defining a

hyperplane that separates the input feature space into two
regions.

A binary threshold activation function is
an equivalent algorithm to cutting on a
fisher discriminant to distinguish
between types of training example.

F=wla+p

The only real difference is the heuristic
used to determine the weights.

o
A.Bevan ‘a;Q_ﬁl Queen Mary

University of London
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ARTIFICIAL NEURAL NETWORKS (ANNs)

» Assingle perceptron can be thought of as defining a hyperplane that separates the
input feature space into two regions.

» This is a literal illustration for the binary threshold perceptron.

» The other perceptrons discussed have a gradual transition from one region to the
other.

» We can combine perceptrons to impose multiple hyperplanes on the input feature
space to divide the data into different regions.

» Such a system is an artificial neural network. There are various forms of Artificial Neural
Networks (ANNSs) - also referred to as Neural Networks (NNs); in HEP this is usually
synonymous with a multi-layer perceptron (MLP).

» An MLP has multiple layers of perceptrons; the outputs of the first layer of
perceptrons are fed into a subsequent layer, and so on. Ultimately the responses of

the final layer are brought together to compute an overall value for the network
response.

o
A.Bevan ‘an_‘l Queen Mary

University of London
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MULTILAYER PERCEPTRONS

» lllustrative example: Input data example: z = {z1,z2,23,...,2,}

' —7
) K\ﬁ S~

ANNZe NI
K

/

Input layer of n perceptrons;
one for each dimension of the
input feature space

/

nnnnnnnnnnnnnnnnnn
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MULTILAYER PERCEPTRONS

» lllustrative example: Input data example: z = {z1,z2,23,...,2,}

X

-

RN

T

A

7\

Xn

/

Input layer of n perceptrons;
one for each dimension of the
input feature space

|

Hidden layer of some number
of perceptrons, M; at least one
for each dimension of the input
feature space.

&
A. Bevan \QQ;._"[ Queeﬂ |V|al’y

University of London
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MULTILAYER PERCEPTRONS

» lllustrative example: Input data example: z = {z1,z2,23,...,2,}

X, \.5 7\
BN 2
ST o

|

Output layer of perceptrons;
one for each output type. In
this case the network has

Xn
I only one output.
Hidden layer of some number
Input layer of n perceptrons;
, , of perceptrons, M; at least one
one for each dimension of the : : :
for each dimension of the input

&
A. Bevan ‘E;Q‘:'al Queeﬂ |V|al’y

input feature space
featu re Spa ce. University of London
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MULTILAYER PERCEPTRONS

» We can extend the computation of an activation function based on

y =fw'x +b)

» to that of a layer in an MLP. The same equation applies in matrix form
(assuming the same activation function is used for each node in the layer).

( W11 W12 W1 N \ ( 1 \
T (VD] Wo9 Wo N I
w r = .
\ wNl, WN2 ... WNN ) \ LN )

» The result of wTx is a column matrix, one element for each node in the
layer of the MLP. The bias and y are also a column matrices of the same
form.

» y becomes the input feature space for the next layer (our output node) in
the MLP

o
A.Bevan ‘an_‘l Queen Mary

University of London
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» Parameter tuning is referred to as training or fitting (usually training in the
context of NNs).

» A perceptron of the form f(wT™x+0) has n+1=dim(x)+1 hyper-parameters to be
tuned.

» The input layer of perceptrons in an MLP has n(n+1) hyper parameters to be
tuned.

» ...and so on.
» We tune parameters based on some metric! called the cost or loss function.

» We optimise the hyper-parameters of a network in order to minimise the loss
function for an ensemble of data.

» For now we gloss over the details and assume there is an algorithm that takes
care of parameter optimisation for us, given some initial guess for the weights.

b
1Also called a figure of merit in the previous lectures. A.Bevan WO Queen Mary

University of London
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EXAMPLES: TRIGGER SELECTION FOR BELLE I

» Use neural networks as part of the track trigger.

» 27 dimensional input feature space is fed into a network with 127
nodes using data from the central drift chamber (CDC) of that

experiment.

» Inputs are mapped onto [-1, 1] to use a tanh activation function.
127 + 1

Information taken from different
super-layers of the tracking system.

\‘ ‘ll Y,

Q ) C.,\/Q - \\\\\. (%,I” -
N ///

%‘ l/[// v \\\\\

Bias nodes with a .
L
fixed input of 1 / A.Bevan ‘E.Q_sl Queen |V|al’y

Neuhaus et al., hitp://inspirehep.net/record/1616030 University of London



http://inspirehep.net/record/1616030
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EXAMPLES: TRIGGER SELECTION FOR BELLE I

» This network is used to approximate the functions of zg
and O, the position of the vertex in z and the polar angle,

respectively.

» Efficiency computed on Monte Carlo simulated examples
for different channels denoted below.

trigger condition efficiency
# tracks  # IP tracks BB T Touy
>3 >0 939% 18.7% 12.4%
2 >0 46% 387% 44.4%
2 >1 44% 38.1% 44.1%
2 2 29% 335% 40.0%

3or2with>11P 983% 56.8% 56.5%

b
- A.Bevan WQ Queen Mary
Neuhaus et al., hitp://inspirehep.net/record/1616030 = University of London
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EXAMPLES: HIGGS SEARCH AT ALEPH

» This LEP experiment presented cut-based and NN-based
searches for the Higgs.

» These two approaches had different sensitivities, and the

neural network significance presented a hint for a Higgs
boson.

» Single network with three output classes: one for the

signal, one for qq background and one for W+W-
background.

» The hintwas at 114 GeV/c?; 11 GeV/c2 below the discovery
point; so ultimately this was a statistical fluctuation.

&
A.Bevan ‘a, o Queen Mary
ALEPH Collaboration, Phys.Lett.B495:1-17,2000 T Univ

ersity of London
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EXAMPLES: HIGGS SEARCH AT ALEPH

» Search foreTe™ — ZH produced via

Higgsstrahlung

» where the H predominantly decays into two b quarks or
two 7 leptons, and the associated Z boson decays either

into neutrmo guark or lepton pairs._

‘ ' Footnote: The H—bb decay was discovered by ATLAS and CMS in the summer of 1
1 2018 using the this channel (along with several others). Please see the CERN press ];

! release for details.

i. _ . i e ——————————————— A.Bevan \a,Q’s’ Queen Mary
ALEPH Collaboration, Phys.Lett.B495:1-17,2000 rsity of London



https://press.cern/press-releases/2018/08/long-sought-decay-higgs-boson-observed
https://press.cern/press-releases/2018/08/long-sought-decay-higgs-boson-observed
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EXAMPLES: HIGGS SEARCH AT ALEPH

Analysis Signal Background Events Events | Expected
Events Expected Obs. | Significance

Expected 77, WWwW ff Total (o)
Hqq (NN) 4.5 23.0+£1.0 | 8.6+£0.6 | 15.3£1.7 | 46.9+2.1 52 1.6
Hqq (Cut) 2.9 12.64£0.7 | 3.240.2 | 7.940.7 | 23.7£1.0 31 1.3
Hvv (NN) 1.4 13.5+£0.7 | 22.0£1.1 | 2.0+04 | 37.5+1.4 38 0.8
Hvv (Cut) | L3 0.9+1.1 | 8.8%1.7| 1.0+0.3| 19.742.0| 20 0.7
H{T 0~ 0.7 26.4+0.3 | 2.4+£0.1 | 1.8+0.3 | 30.6+0.4 29 0.8
T qq 0.4 6.4+0.3 | 6.2+0.3 | 1.0+£0.3 | 13.640.5 15 0.4
NN Total 7.0 69.3+1.3 | 39.2+1.3 | 20.1£1.8 | 128.7+£2.6 | 134 2.1
Cut Total 5.3 55.3+1.4 | 20.6+1.7 | 11.7£0.9 | 87.6+2.4 95 1.8

» The pattern of the NN based analysis consistently out performing the cut-

based analysis is to be expected and it is one of the reasons why cut

based analyses are being used less often than they used to:

» In general MVA-based analyses outperform rectangular cut based

analyses. If you find that they do not do this for your particular analysis,
then you have a problem with your model.

ALEPH Collaboration, Phys.Lett.B495:1-17,2000
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EXAMPLES: HIGGS SEARCH AT ALEPH

» The enhanced sensitivity is reflected in the event yields
observed in the data:

N: N: i
225 [ NN analysis (a) > | Cut-based analysis (b)
O Q20
T | T |
220 | - 2 |
= - = i
S V15 -
Q| Q i
15 - [
: 10|
10 i
: |
S i +
O 60 70 80 90 100 110 120 130 O 60 70 80 90 100 110 120 130
My GeVIE) My (GeVIE)

» NN based analysis has 134 events vs 95 for the cut based
approach.

&
A.Bevan WO Queen Mary
ALEPH Collaboration, Phys.Lett.B495:1-17,2000 -
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EXAMPLES: HIGGS SEARCH AT ALEPH

» The presence of a Higgs boson is determined using a
likelihood ratio between signal+background and
background only hypotheses:

Lewy e G et s £ (X)) 4+ bfy (X))
Ly, et bf( z)
ALEEPH:

Q20
S
™ 15

10

Observed

Expected ===-=- |
-10

20 106 108 110 112 114 116 118 120 20 106 108 110 112 114 116 118 120

mH(GeV/c ) mH(GeV/c )

A. Bevan \a.,Qsl Queen Mary
ALEPH Collaboration, Phys.Lett.B495:1-17,2000 rsity of London
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SUMMARY

» Neural networks are built on perceptrons:

» Inspired by desire to understand the biological function of the
eye and how we perceive based on visual input.

» The output threshold of a perceptron can be all or nothing, or
be continuous between those extremes.

» Artificial neural networks are constructed from perceptrons.

» Perceptron/network weights need to be determined via some
optimisation process, called training.

» ... This leads us on to issues related to training and toward deep
neural networks.
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SUGGESTED TOOLS

» Various toolkits exist for neural networks. These can be found in commercial
packages such as Mathematica and Matlab, in open source toolkits such as CNTK,
TensorFlow, Keras, Caffe etc.

» TMVA in ROOT:

» HEP community developed toolkit is one way to start using neural networks.

» Several different neural network’s available:

» Clermont-Ferrand neural net (used for Higgs searches on ALEPH and B tagging on
BaBar).

» TMultiLayerPerceptron
» MLP
» Bayesian MLP

» Deep Networks

s
. . A.B Q)Y Queen Mar
* see Sahin et al in the references. evan Wok E%versityoflondon y


https://reference.wolfram.com/language/guide/NeuralNetworks.html
https://www.mathworks.com/products/neural-network.html
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://www.tensorflow.org
https://keras.io
http://caffe.berkeleyvision.org
https://root.cern.ch/tmva
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SUGGESTED READING (HEP RELATED)

» Numerous examples can be found in the literature of
applying neural networks to data.

» Books:

» |I. Narsky and F. Porter, “Statistical Analysis Technigues in

Particle Physics: Fits, Density Estimation and Supervised
Learning”, Wiley (2013).

» Neural networks are also discussed in the multivariate
techniques chapter of A. Bevan et al., “The Physics of the
B Factories”.

A.B ‘g__ Q ueen I\/Iary
Univ


http://www.hep.caltech.edu/~NarskyPorter/
http://www.hep.caltech.edu/~NarskyPorter/
http://www.hep.caltech.edu/~NarskyPorter/
http://www.hep.caltech.edu/~NarskyPorter/
https://arxiv.org/abs/1406.6311
https://arxiv.org/abs/1406.6311
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SUGGESTED READING (NON-HEP)

» The suggestions made here are for some of the standard text books on the subject.
These require a higher level of math than we use in this course, but may have less
emphasis on the practical application of the methods we discuss here as a
consequence. Many other books have been written on this subject.

» MacKay: Information theory, inference and learning algorithms
» C.Bishop: Neural Networks for Pattern Recognition
» C. Bishop: Pattern Recognition and Machine Learning

» T.Hastie, R. Tibshirani, J. Friedman, Elements of statistical learning

» In addition to books, you may find interesting articles posted on the preprint archive:
https://arxiv.org. There are several useful categories as part of the Computing Research
Repository (CoRR) related to this course including Artificial Intelligence. Note that these
are research papers, so again they will generally have a strong mathematical content.
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APPENDIX

» We have discussed only 2 output classification types in
these slides. The following slides illustrate how to extend
models to multiple classification output types.
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MULTICLASS CLASSIFICATION

» Set the output layer to have multiple nodes; each node is tasked with making a single classificaiton of
an example being of one type or not.

» The Nype = 10 perceptrons are used to make the following decisions:

® The number 1 vs not the number 1  For those with a statistical background,
| this is like a null hypothesis and an
alternative hypothesis.

® The number 2 vs not the number 2

® The number 3 vs not the number 3
The null hypothesis provides a specific
® The number 4 vs not the number 4 response/expectation.

|

® The number 5 vs not the number 5 The alternative hypothesis is the

® The number 6 vs not the number 6 m complement of the null.

® The number 7 vs not the number 7 In this context you classify an example |
as a specific type, or you provide a |
decision that it is not that type.

— eSS —————— —

® The number 8 vs not the number 8

® The number 9 vs not the number 9
We will see more of the MNIST data when

@ The number 0 vs not the number 0 talking about convolutional neural networks.

o
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MULTICLASS CLASSIFICATION

» An alternative representation is to use a softmax activation

function to encode the 10 outputs in a single function.

T o o . o o .
eW; & i is the index for the output classification

(@) = <

Zizl e’

The score for the ith output is normalised
by the sum of outputs.

B ewfx ] fi(x) is normalised to lie in the range [0, 1]
T
1 eW2 T
flz) = =7 wT '
2 i1 € : g
wﬁx Y0.5 |

e
» Can convert output to {0, 1}.

Example of the ith output of a softmax activation
function for a 2D input feature space. 1.0
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MULTICLASS CLASSIFICATION

» Loss functions (see the next lecture) need to be modified
to accommodate multiple output classification types.

» e.g.softmax-cross entropy

nnnnnnnnnnnnnnnnnn



