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LECTURE PLAN

» Introduction

» Deep MLPs

» Convolutional neural networks
» Adversarial networks

» Using auto-encoders

» Examples

» Summary

» Suggested reading
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INTRODUCTION

» Deep networks have had a lot of media attention in recent
years and are possible because of advances in computing
technology - specifically multi-core CPUs and GPUs.

» They are computationally very expensive and require large
samples of data and a lot of training epochs to ensure
convergence to some optimal solution.

» We can adapt the algorithms we have discussed so far to
turn those neural networks into deep networks.

» There are new forms of network that we will also discuss.

&
A.Bevan ‘a;_" Queen I\/Iary
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DEEP MLPs

» What is a deep network?

» Different people use different definitions for what a deep
network is.

» An MLP with more than a few layers is called a deep
network.

» Configurations vary from a few very wide layers
(hundreds of nodes) to a large number of narrow layers
(with similar to the dimensionality of the input feature
space); as well as everything in-between those two
extremes.

L
A. Bevan ‘5;_4 Queen Mary
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DEEP MLPs

» General remarks about using deep MLP’s:

4

Typically need a large training sample to evaluate the HPs for a deep
network.

Dropout is used to mitigate overtraining, batch learning to accelerate
optimisation.

Deep networks with sufficient training data are able to learn the
underlying patterns from lower level features (e.g. four-vectors) that
would normally be present in higher level derived features (e.g. invariant
mass, missing mass, etc.).

More care and attention to the training process is required for deep
networks than for single layer or MLPs with small numbers of layers.

Computing resource required for training increases significantly with

complexity (number of HPs). .
A.Bevan ‘an_‘l Queen Mary

University of London
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CONVOLUTIONAL NEURAL NETWORKS (CNNs)

» Input data
» Convolution layers
» Padding
» Pooling
» Max-pooling and average pooling
» Convolutional Neural Network (CNN) architectures

» Revisit input data

nnnnnnnnnnnnnnnnnn
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CNNSs: INPUT DATA

» CNNs take advantage of spatial correlations of the input
feature space.l]

» This is typically in the form of image data.

» Each pixel corresponds to a feature for each colour that
is encoded in it.

» Greyscale images have a depth of 1, and so the
dimensionality of the feature-space is npixels X Mpixels.’

» Colour images have a depth of 3 (R, G, B); so the
dimensionality of the feature space is 3 X Npixels X Mpixels.”

[1] K Fukushima, Bio. Cybernetics 36 p193-202, 1980. .
Typically CNNs are applied to square images. A.Bevan WQ Queen Mary

University of London
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CNNs: INPUT DATA

» Some analyses take pairs of variables and create 2D
histograms from those (e.g. pr and n); normalise the
content to lie in the range [0, 1] & feed those into a CNN.

» Different pairs of features correspond to different “colour
channel” layers of the CNN input image.

[1] K Fukushima, Bio. Cybernetics 36 p193-202, 1980. A.Bevan ‘a;é_s’ Queen Mary

University of London
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CNNs: INPUT DATA

» X

This is an 8 by 8 array of pixels, that corresponds
to a 64 dimensional feature space.

» An MLP can be used to process
this data, but you loose the
spatial correlations between
information in the image.

» The image can be represented
by a a line of features.

» Doing this removes the spatial

correlations and would
naturally lend itself to being
processing by a perceptron;
i.e. f(wTx+0).

&
A. Bevan \QQ;._"[ Queeﬂ |V|al’y

University of London
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CNNSs: INPUT DATA

» An MLP can be used to process

il ol ol wl < N this data, but you loose the
spatial correlations between
B3 F & information in the image.

» The image can be represented
by a a line of features.

» But doing this removes the
spatial correlations and would
naturally lend itself to being

rocessing by a perceptron;
This is an 8 by 8 array of pixels, that corresponds p gbyap P !
to a 64 dimensional feature space. l.e. f(WTX+e).

f(wTx+0)

o
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CNNs: CONVOLUTION LAYERS

» X

This is an 8 by 8 array of pixels, that corresponds
to a 64 dimensional feature space.

» We can split the image up into a smaller grid of
pixels (filter), and search for a pattern in that
grid.

» In this example we take a 3x3 grid of pixels.

» We can compute a numerical convolution of
these 9 pixels using f(wTx+0).

» Spatial correlations within this grid of pixels are
used when computing the numerical
convolution.

» Larger filters can be used; where odd numbers
of pixels are normally used:

» 1x1: identity transformation preserve the
iInput image;

» 3x3, 5x5, ... ; compute convolution image.

&
A. Bevan \QQ;._"[ Queeﬂ |V|al’y

University of London
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CNNs: CONVOLUTION LAYERS

» That same “convolution

filter” can be used iteratively
over the whole input image.

» The output values for each
iteration are just the value of
the output of a perceptron.

» The set of outputs from
running the convolution

» X

filter across the input forms

This is an 8 by 8 array of pixels, that corresponds

to a 64 dimensional feature space. a new “convolution image".

&
A. Bevan ‘E;Q‘:'al Queeﬂ |V|al’y

University of London
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CNNs: CONVOLUTION LAYERS

> <

13

» If you use an M x M filter on an N x N image, the convolved

image is smaller than the original.

flw"z+ B)

nnnnnnnnnnnnnnnnnn
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CNNs: CONVOLUTION LAYERS

» <

14

» If you use an M x M filter on an N x N image, the convolved

image is smaller than the original.

flw"z + B)

nnnnnnnnnnnnnnnnnn
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CNNs: CONVOLUTION LAYERS

> <

15

» If you use an M x M filter on an N x N image, the convolved

image is smaller than the original.

» X

8x8 image

flw"z+ B)

3x3 filter

6x6 image

nnnnnnnnnnnnnnnnnn
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CNNs: CONVOLUTION LAYERS

» If you use an M x M filter on an N x N image, the convolved
image is smaller than the original.

Thls |I|ustrat|on uses a strlde of |
1 so the conv filter is applied
to the input image with a shift |
of 1 pixel at a tlme in X and Y |

»X  8x8image 3x3 filter 6x6 image

A. Bevan \Qal Queen I\/Iary

rsity of London
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CNNs: CONVOLUTION LAYERS

» (M-1)/2 pixels are lost from the border of the input image in
order to create the convolution image.

Image Size Filter Size Convolution image size
8x8 3x3 b6xb6
8x8 5x5 Ax4
8x8 7x7 2%2
10x10 3x3 8x8
10x10 5x5 6x6
10x10 /x/ 4dx4
10x10 9x9 2x2

lu This illustration uses a stride of 1 {

» An NxN image becomes a (N-M+1) x (N-M+1) image*.

» Repeatedly convoluting the image reduces the dimensionality
of the feature space; which can be undesirable.

b
*The border is both sides of the image so you loose (M-1)/2 pixels twice; once for each side. A.Bevan WO Queen Mary

University of London
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CNNs: CONVOLUTION LAYERS: PADDING

» The dimensional reduction of feature space can be
mitigated by padding the original image with a border of

width (M-1)/2 pixels.

» The values of the border padding are set to zero (no
information provided to the convolution layer).

» Now the original image can be convoluted any number of
times (within resource limitations) without reducing the
dimensionality of the input feature space that contains
non-trivial information.

nnnnnnnnnnnnnnnnnn
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CNNs: CONVOLUTION LAYERS

» Each convolution filter is tuned to identify a given shape
when scanning through an image.

» These can be edge, line or other shape filters.

» By using a set of convolution filters, one can pick out a set
of different features in an image.

» The weights for these filters are usually initialised
randomly using a truncated Gaussian distribution with

output >0.

» This is to avoid negative weights.

A.B \L Q ueen I\/Iary
Univ
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CNNs: POOLING

» The dimensionality of the features in a convolutional layer is large; numerically it is
convenient to reduce the dimensionality for further processing.

» High resolution images are not required to be able to identify shapes of objects;
» Can make a lower resolution representation and still reach the same conclusion.
» Pooling is a mechanism that allows you to achieve this.[!

» Define a filter size for pooling (e.g. 2x2) and then perform an operation on the pixels to
compute:

» Maximum value (max pooling): useful to suppress noise when information is
sparse and the number of pixels having a significant value is expected to be low.

» Average value (average pooling): Averaging pixels values can give a smaller
variance on the information contained in those pixels.

» Ref.[1] provides an analysis of these two approaches.

[1] Boureau, Y. L., Ponce, J., & Lecun, Y. (2010). A theoretical analysis of feature pooling in .
visual recognition. In ICML 2010 - Proc., 27th Int. Conf. on Machine Learning (pp. 111-118) A.Bevan ¥Q4f Queen Mary

University of London
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CNNs: POOLING

» The pooling process is applied to each individual part of
the image (i.e. dimensional reduction)

Average pooling is just applying the following to
each set of pixels. i N

fzﬁzxi

i=1
Max pooling is equivalent but taking

f = max(x)

The output is a smaller image.

&
A. Bevan Qﬁl Queeﬂ |V|al’y

University of London
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CNNs: POOLING

» The pooling process is applied to each individual part of
the image (i.e. dimensional reduction)

&
A. Bevan Qg’ Queeﬂ |\/|al’y

University of London
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CNNs: POOLING

» The pooling process is applied to each individual part of
the image (i.e. dimensional reduction)

L
A.Bevan @_5’ Queeﬂ |\/|al’y

University of London
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CNNs: POOLING

» The pooling process is applied to each individual part of
the image (i.e. dimensional reduction)

and so on...

b
A.Bevan W Queen Mary

University of London



MACHINE LEARNING IN HIGH ENERGY PHYSICS: DEEP LEARNING 25

CNNs: ARCHITECTURES

» The simplest convolutional neural network (CNN) architecture is:

FULLY

CONVOLUTION
LAYER WITH

SET OF CONNECTED
CONVOLUTION LAYER (MLP-LIKE
SOMESET OF [lmmmmrdll IMAGES: ONE PER Mlmmmmedll STRUCTURE) WITH
FILTERS FILTER AT LEAST ONE
PERCEPTRON

» The convolution layer takes an image and applies a set of k
filters to the image.

» Each filter results in a new convolution image as its output.

» All of the features in all of the convolution images are combined
to make a final combined output of the information.

o
A.Bevan ‘5;_4 ueen Mary

University of London
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CNNs: ARCHITECTURES

» e.g.the AlexNet CNN architecture

| This is a complicated
AR L 3,'."-1% 3|K’ arrangement of
5| S\ A .
P ’ ~f, 192 192 128 2048 2048 \dense COhVOlUtIOn and
128 P wame ] ] . .
= 27 AN 13 A \e pooling layers, with
224 . 3| I ‘ ° fully connected layers
| i3 T e ’ 13 dense | |dense .
. A R\ N\ at the end (right hand
1000
\ 55 192 192 128 Max || || side).

224 Strld Max 128 Max p00|ing 2048 2048

Uof 4 pooling pooling

3 48

The convolution filters
learned for this
problem are able to
pick out different forms
and colours from an
input example image.

b
Krizhevsky et al., Neural Information Processing Systems conference proceedings.  A.Bevan W) Queen Mary

University of London



https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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CNNs: ARCHITECTURES

» We can include multiple convolution layers layers that may
add to the information extracted from the image.

» We can add pooling layers to reduce the dimensionality.

» e.g. MNIST: handwritten numbers from 0 to 9.

Feature Feature Feature Feature Hidden Hidden

Input maps maps maps maps units units Outputs
1x28 32@28x28 32@14x14 64@14x14 64@7x7 3136 1024

Convolution Max-pooling Convolution Max-pooling Fully Fully

5x5 kernel 2x2 kernel 5x5 kernel 2x2 kernel connected connected

28x28 input image (e.g. MNIST example).

2 convolution layers using 5x5 filter kernels.

Each convolution layer followed by a 2x2 max-pooling layer.
2 fully connected layers leading to 10 outputs.

A. Bevan \a.,Qs’ Queen I\/Iary

rsity of London
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CNNs: ARCHITECTURES
» MNIST

» Standard library of hand written numbers for
benchmarking algorithms: 1, 2, 3,4,5,6,7, 8,9, 0.

» Images are 28x28 pixels (greyscale).

» Several examples are shown below

Example: 1 Label: 3 Example: 2 Label: 4 Example: 3 Label: 6 Example: 4 Label: 1

[1] Neural Computation, Volume 22, Number 12, December 2010 . \Q Queen Mary

http://yann.lecun.com/exdb/mnist/ University of London
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http://yann.lecun.com/exdb/mnist/
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CNNs: ARCHITECTURES/INPUT DATA

» So far we have focussed on monochrome images with a
single number in the range [0, 1] representing each pixel.

» What about colour images?
» These have 3 numbers (r, g, b) describing each pixel.

» Trivial to extend the convolution and pooling processes to
work on images of some arbitrary depth D (=3 for colour).

» 3-fold increase in weight parameters to determine.

» e.g. CFAR10 benchmark training setl!.

[1] https://www.cs.toronto.edu/~kriz/cifar.html

L
A. Bevan ‘5;_4 Queen Mary
Univ

ersity of London
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CNNs: ARCHITECTURES/INPUT DATA

» More abstract problems can be addressed in the same way.

» Some examples are given below:

» Transient searches can be addressed by stacking images
together to form an image of depth D.

» Tracking problems can be addressed by stacking
measurement data from successive layers.

» More arbitrary problems can be addressed by feeding
pixelised images of 2D correlations plots between pairs of

input “features” can be constructed. Stacks of these can be
fed into a CNN.

o
A.Bevan ‘5;_4 ueen Mary

University of London
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ADVERSARIAL NETWORKS

» Szegedy et al found that small perturbations in the example were sufficient to lead
to example mis-classification.

» The inclusion of some training example that has a small amount of noise added
to it resulting in a change in classification is counter to the aim of obtaining a
generalised performance from a network.

From Szegedy et al,

Correctly classified image Perturbation of image Incorrectly classified resultant image

Szegedy et al, ICLR, abs/1312.6199 &
A.B WO
Goodfellow et al, CoRR, abs/1412.6572, arXiv:1406.2661 o ek EQuetﬁrJI}Aary



https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1406.2661
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ADVERSARIAL NETWORKS

» Szegedy et al found that small perturbations in the example were sufficient to lead

to example mis-classification.

» The inclusion of some training example that has a small amount of noise added
to it resulting in a change in classification is counter to the aim of obtaining a
generalised performance from a network.

From Goodfellow
et al,

z Sen(Val (6.2.9)  hion(v,,.0(0, 2,1))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Szegedy et al, ICLR, abs/1312.6199 +
A.B WO
Goodfellow et al, CoRR, abs/1412.6572, arXiv:1406.2661 evan o8 EQuetﬁrJI}Aary



https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1406.2661
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ADVERSARIAL NETWORKS

» Adversarial examples with small perturbations in the input are difficult for networks to
classify because of their linear nature in high dimensional feature spaces.

» e.g.for w'x wT(CIZ + 1) alarge value of dim(x) will result in a large change in the

contribution of the perturbed dot product.

» Adversarial training relies on a modification of the cost function with the intention that
the use of adversarial examples in training regularise the optimisation process by
identifying flaws in the model that is being learned.

» Thisin turn leads to an improved training performance.

» Exploiting the nature of adversarial examples allowed Goodfellow et al., to reduce
the error rate for image classification with MNIST data; beyond the benefits of using

dropout.

» The interpretation of this procedure is that one is “minimising the worst case error
when the data are perturbed by an adversary”.

Szegedy et al, ICLR, abs/1312.6199 &
A.B WO
Goodfellow et al, CoRR, abs/1412.6572, arXiv:1406.2661 o ek EQuetﬁrJI}Aary



https://arxiv.org/abs/1312.6199
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1406.2661
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ADVERSARIAL NETWORKS

» The idea behind adversarial networks is to find some way to present adversarial
examples alongside data to improve the ability of the model to recognise both the
data and its adversarial counterpart.

» Train two models simultaneously:
» G: a generative model (the model used to generate adversarial examples for
training)
» D: a discriminative model (the model used to make a prediction that an
example is either data or from the generative model)
» Train D to maximise the rate of correct outcomes for training examples and

samples from the generative model.
» Train G to minimise In( 1- D[G(z)] )*.

» Over training epochs the generative model G will improve so that it mimics D
better.

* |t can be problematic to train G in early epochs as it is possible for D to reject samples from G with high
confidence; so for early epochs one can maximise In(D[G(z)]) to overcome this limitation.

Szegedy et al, ICLR, abs/1312.6199 .
Goodfellow et al, CoRR, abs/1412.6572, arXiv:1406.2661 also see Goodfellow’s NIPS proceedings on A.Bevan \(-2@9_4 Queel’] Mary
Generative Adversarial Networks: arxiv:1701.00160. University of London
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USING AUTO-ENCODERS

» Sometimes it is difficult to specify what features need to be extracted from input data to
solve a particular problem, as the type of interest can manifest itself differently under
different scenarios.

» e.g.consider a particle representation in the laboratory. It's properties in the lab
frame depend on the orientation;

» if we know how to represent the data in terms of Lorentz invariants then we obtain
a much clearer picture of the existence of underlying particles via their mass
spectrum.

» Using Lorentz invariants we are able to understand the spectrum of particles
produced in collisions at a deeper level.

» In analogy Auto-encoders can learn representations of the data. They have two parts:
» an encoder that maps input features into a different representation;

» a decoder that is used to convert back into the original format.

o
A.Bevan ‘an_‘l Queen Mary

University of London
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USING AUTO-ENCODERS

» The purpose of the auto-encoder is to learn the mapping

X: input feature space
r — h — r ° P

h: hidden layer giving an alternate
h = f(g;) representation of the data

r: reconstruction of x computed by the auto-

r — g(h) — g(f(:lj)) encoder

» If the auto-encoder learns to copy the input feature to the reconstructed output perfectly
then r is not particularly useful.

» The representation given by h can be useful:

» If dim(h) < dim(x) then the auto-encoder is under-compete and the auto-encoder
learns how to copy x to r using the most important input features.

» Under-complete auto-encoders can learn something interesting about the input data,
which can be extracted from h.

» auto-encoders with too large a dim(h) can learn to copy x without extracting any
interesting information about the data: these are not interesting unless regularisation
is used to change the behaviour.

o
A.Bevan ‘an_‘l Queen Mary

University of London
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USING AUTO-ENCODERS

» The purpose of the auto-encoder is to learn the mapping

X: input feature space
r — h — r ° g

h: hidden layer giving an alternate

h = f(g;) representation of the data
r: reconstruction of x computed by the auto-
r= g(h) — g(f(x)) encoder

» If the auto-encoder learns to copy the input feature to the reconstructed output perfectly
then r is not particularly useful.

Input
feature

Output prediction
space

of the model

Encoder (e.g. layer Decoder (e.g. layer

of an MLP) of an MLP) A. Bevan \aQ_gl Queen Mary

University of London
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USING AUTO-ENCODERS

» Denoising auto-encoders are extensions of auto-encoders,
where the input x is replaced by X, which is a copy of the
example x, modified according to some noise.

> l.e. r=g(f(z))

» The loss function used to train an auto-encoder compares
x with r; e.g. using an MSE or L2-norm loss function this is
simply a sum of squared difference.

» This type of auto encoder allows a network to learn how
to reconstruct x taking into account the noise (e.g. a
systematic uncertainty).

&
A.Bevan ‘a;_" Queen I\/Iary
Univ

ersity of London
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EXAMPLES: JET FLAVOUR CLASSIFICATION

» Quark colour confinement leads to the creation of jets as pairs of
quarks and anti-quarks are pulled apart.

» As aresult we don't see bare quarks.

» However we do see many hadrons eliminating from some
underlying quark.

» These hadrons form objects called jets that are reconstructed in our
detectors.

» The nature of the underlying quark is of interest as knowing that
allows us to infer something about an underlying interaction; e.g.
the decay of a Higgs boson to two b-quarks requires that we
accurately identify events with two (or more ) b jets.

o
A.Bevan ‘an_‘l Queen Mary

University of London
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EXAMPLES: JET FLAVOUR CLASSIFICATION

» Consider jet identification in pp collisions at the LHC.

» Vertex, track and calorimeter information are used to identify jets.
» Aim: separate jets into:

» light quarks (u, d, s);

» charm;

» beauty.

» Guest's study uses the anti-kt algorithm for jet reconstruction and
FastJet.

» 8 million jets for training, 1 million for testing and 1 million for validation.

o
A.Bevan ‘an_‘l Queen Mary
Guest et al., Phys. Rev. D 94, 112002 (2016) University of London
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EXAMPLES: JET FLAVOUR CLASSIFICATION

} I N p Ut Va I’i a b I es. attached to a vertex, ordered by dj significance.
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EXAMPLES: JET FLAVOUR CLASSIFICATION

» Several different algorithms are used including MLPs

Input Hidden Hidden Hidden
layer layer 1 layer 2 layer N

Track 1 {
Track N {

» "Experts” are networks that are trained to address a
specific issue. This study constructs "Experts” that are
used as inputs to a final network.

Output

\/_./

Shared
weights

o
A.Bevan ‘an_‘l Queen Mary
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EXAMPLES: JET FLAVOUR CLASSIFICATION

» Several different algorithms are used including MLPs

Inputs Technique AUC é 10 R ' ' ' L rackssverticessExprt 3
Tracks Vertices Expert 3 - — VerlcassExpen -
v Feedforward 0.916 4 - — Expen
v LSTM 0917 ¥ F a3
v Outer 0.915 3— - o Tracks
v Feedforward 0.912 £ o .
v LSTM 0911 4 =
v Outer 0.911
v v Feedforward 0.929 0E E
v v LSTM 0.929 -
v v Outer 0.928 L , B
‘/ Feedforward 0924 0.4 0.5 0.6 0.7 0.8 . 09 1.
v LSTM 0.925 Signal efficiency
v. Outer 0.924
v v' Feedforward 0.937 5 , | | | | |
v v LSTM 0.937 5 R T TcksvertioensExpert
v v Outer 0.936 ) TFEENOD e E
v v' Feedforward 0.931 X -~~~ Tracks+Vertices
v v LSTM 0.930 N S O .
v v Outer 0.929 z
v v v’ Feedforward 0.939 E 10k —
v v v LSTM 0.939 (@] - .
v v v" Outer 0.937
» They give similar performance. L |

0.4 0.5 0.6 0.7 0.8 0.9 1
Signal efficiency

» CMS has followed a deep network approach to jet tagging in their latest
work (e.g. H—=bb) [see A.M. Sirunyan et al 2018 JINST 13 P0O5011, CMS PAS

HIG-18-016 ].
o
A.Bevan ‘an_‘l Queen Mary
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EXAMPLES: PARTICLE IDENTIFICATION AT MICROBOONE

» MicroBooNE LAr TPC produces images that need to be
interpreted in terms of the underlying neutrino interaction
physics:

» 3 different views of the same v interaction.

» Use existing software available from the web with
many of the techniques discussed in these lectures.

A /
- -

input feature map

/

NN N NN AN

AN AN
AVANANANANEAN

/

MicroBooNE Collaboration, JINST12 (2017) no.03, P0O3010 . Uniersityof London
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EXAMPLES: PARTICLE IDENTIFICATION AT MICROBOONE

» MicroBooNE LAr TPC produces images that need to be
interpreted in terms of the underlying neutrino interaction

physics:

pBooNE

pBooNE
Software

ref.

Purpose

» 3 different views of the same v interaction.

» Use existing software available from the web with
many of the techniques discussed in these lectures.

Used in Demonstrations

LArSoft

uboonecode
LACV
Calfe
AlexNet
GooglLeNet
Faster-RCNN
Inception-ResNet-v2
ResNet

pBooNE

[7]
8]
9]
[10]
(1]
[11]
[12]
[13]
[14]

Simulation and Reconstruction

Simulation and Reconstruction
Image Processing and Analysis
CNN Training and Analysis
Network Model

Network Model

Network Model

Network Model

Network Model

1-3

MicroBooNE Collaboration, JINST 12 (2017) no.03, PO3011
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EXAMPLES: PARTICLE IDENTIFICATION AT MICROBOONE

» MicroBooNE LAr TPC produces images that need to be
interpreted in terms of the underlying neutrino interaction
physics:

pBooNE

» Image resolution matters for the performance of this
convolutional neural network.

Classified Particle Type
Image, Network e %] y [ %] u | %] n %) proton | %]
Hhoo HiRes. AlexNet 73.6+07 813+06 84806 73.1+07 87205
LoRes. AlexNet  64.1 08 77.3+07 752+07 742+07 85.8+0.6
HiRes, GoogLeNet 77.8+0.7 834+06 89.7+05 71.0+07 91.2+0.5
LoRes, GoogLeNet 74.0+0.7 74.0+07 84.1+0.6 752+07 84.6+0.6

pBooNE

Table 2. Five particle classification performances. The very left column describes the image type
and network where HiRes refers to a standard 576 by 576 pixel image while LowRes refers to
a downsized image of 288 by 288 pixels. The five remaining columns denote the classification
performance per particle type. Quoted uncertainties are purely statistical and assume a binomial
distribution.

&
A. Bevan \@ Queeﬂ |V|al’y

University of London
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EXAMPLES: AUTO-ENCODER

» Dimensional reduction using an
auto-encoder configuration of 10
nodes in a hidden layer:

» Galaxies can be described by 4
parameters (two ellipticities, a
position angle and an
amplitude).

» Starts can be described by 2
parameters (radius and
amplitude)

» This auto-encoder configuration
is able to reconstruct an image
of the galaxy and star with noise
removed.

Graff et al., Mon.Not.Roy.Astron.Soc. 441 (2014) no.2, 1741-1759

Galaxy

True Galaxy

3

True Star

Reconstructed Galaxy

Galaxy

Reconstructed Star

Star

T

&
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SUMMARY

» Deep learning is not a panacea; but it does have a role in machine learning.

» Generally requires larger training/test data sets than other algorithms in
order to avoid overtraining.

» Can outperform other algorithms on some problems.

» Deep learning algorithms are more complicated than older algorithms; that
makes it harder to optimise the HPs for them.

» Considered deep MLPs and CNNs

» Adversarial examples and networks have been discussed as a method
for improving performance.

» The role of auto-encoders in deep networks has also been introduced.

o
A.Bevan ‘an_‘l Queen Mary
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SUGGESTED READING (HEP RELATED)

» A lot of people are starting to use deep learning in high energy physics.
The following is a selection of recent papers that you might wish to
read at:

» Guest et al.,, Phys. Rev. D 94, 112002 (2016) [jet classification]

» A.M. Sirunyan et al 2018 JINST 13 P05011 [jet classification at CMS]
» MicroBooNE Collaboration, JINST 12 (2017) no.03, PO3011[LAr TPC]
4
4
4

Andrews et al., arXiv:1807.11916 [Event classification at CMS]
Guillen et al., arXiv:1807.09024 [air shower analysis]
Baldi et al., Nature Commun. 5 (2014) 4308 [Searches]

&
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SUGGESTED READING (NON-HEP)

» Please see the references mentioned in the slides. There
are a number of good books on deep learning that are
available; and two examples are given here:

» Goodfellow et al, Deep Learning, MIT Press (2016) [from
the perspective of methods and algorithms]

» A. Géron, Hands on Machine Learning with Scikit-Learn
and TensorFlow, O'Reilly (2017) [from the perspective of
coding up and using these methods]

nnnnnnnnnnnnnnnnnn
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APPENDIX

» The remainder of these slides discuss in brief the MNIST
and CFAR-10(0) samples.

o
A.Bevan ‘an_‘l Queen Mary

University of London
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MNIST

» For more than two classification output types we need to have Nyype

perceptrons in the final output layer.

» Each output perceptron has an all or nothing response that classifies if a
training example is classified as that type or not.

» e.g.the numbers 1,2, 3,...9, 0 [MNIST example]

» If we have a complete set of possible outcomes then we can use this
constraint to reduce the number of perceptrons to Nyyge.

» Assumes that the default classification for one category is given by an
example not being classified as any of the others.

o
http://yann.lecun.com/exdb/mnist/ a.Bevan WQ Queen Mary

University of London
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MNIST

» 60000 training examples

» 10000 test examples

» These are greyscale images (one number required to
represent each pixel)

» Renormalise [0, 255] on to [0, 1] for processing.
» Each image corresponds to a 28x28 pixel array of data.

» For an MLP this translates to 784 features.

b
http://yann.lecun.com/exdb/mnist/ A.Bevan W) EQ_ueen Mary

ersity of London
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CFAR-10

» 60k 32x32 colour images (so each image is a tensor of
dimension 32x32x3).

» This is a labelled subset of an 80 million image dataset.

airplane

=N - BB

» 10 classes:  automovie ENE AN ENuE=S

bird
cat
deer
dog
frog
horse
ship

truck

Tml VES FERW
el b LA R o
EME~ R VERRES
Pl S Iy o] GNP -
o 0 S el 0 A B
RO ERTTR
=T PP
AW R ES TS0

https://www.cs.toronto.edu/~kriz/cifar.html
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CFAR-100

» 100 class variant on the CFAR10 sample:

» 32x32 colourimages (so each image is a tensor of

dimension 32x32x3).

» 100 classes:

Superclass

aquatic mammals

fish

flowers

food containers

fruit and vegetables
household electrical devices
household furniture

insects

large carnivores

large man-made outdoor things
large natural outdoor scenes
large omnivores and herbivores
medium-sized mammals
non-insect invertebrates
people

reptiles

small mammals

trees

vehicles 1

vehicles 2

https://www.cs.toronto.edu/~kriz/citfar.html

Classes

beaver, dolphin, otter, seal, whale

aquarium fish, flatfish, ray, shark, trout

orchids, poppies, roses, sunflowers, tulips
bottles, bowls, cans, cups, plates

apples, mushrooms, oranges, pears, sweet peppers
clock, computer keyboard, lamp, telephone, television
bed, chair, couch, table, wardrobe

bee, beetle, butterfly, caterpillar, cockroach
bear, leopard, lion, tiger, wolf

bridge, castle, house, road, skyscraper

cloud, forest, mountain, plain, sea

camel, cattle, chimpanzee, elephant, kangaroo
fox, porcupine, possum, raccoon, skunk

crab, lobster, snail, spider, worm

baby, boy, girl, man, woman

crocodile, dinosaur, lizard, snake, turtle
hamster, mouse, rabbit, shrew, squirrel

maple, oak, palm, pine, willow

bicycle, bus, motorcycle, pickup truck, train
lawn-mower, rocket, streetcar, tank, tractor

&
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CFAR-100

» From this course you have the technical ability to work
with these data sets;

» CNNs
» MLPs

» The issue you have to solve is reading them in; there are
examples of how to do this on the tensor flow website:

» https://www.tensorflow.org/tutorials/images/
deep_cnn

https://www.cs.toronto.edu/~kriz/cifar.html A.Bevan ‘a;@’ Queen Mary

University of London
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