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▸ Suggested reading

�2



A. Bevan

MULTIVARIATE ANALYSIS AND ITS USE IN HIGH ENERGY PHYSICS: DECISION TREES

INTRODUCTION
▸ The cut based and linear discriminant analysis methods are limited. 

▸ The underlying concepts of applying Heavyside function constraints 
on data selection and on the use of a decision boundary definition (a 
plane in hyperspace) of the form of the dot product                 can be 
applied in more complicated algorithms. 

▸ Here we consider extension to the concept of rectangular cuts to 
decision trees as a machine learning algorithm. 

▸ We will have to introduce the concepts of classification and 
regression; and methods to mitigate mis-classification of data.   

▸ The issue of overtraining is something we will come back to when 
discussing optimisation.
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DECISION TREES
▸ Consider a data sample with an N dimensional input feature space X. 
▸ X can be populated by examples from two or more different species of 

event (also called classes, categories or types). 
▸ Consider the two types and call them signal and background, 

respectively*. 
▸ We can use a Heavyside function to divide the data into two parts: 
▸ We can use this to distinguish between regions populated signal and 

background:
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*Can generalise the problem to an arbitrary number of types.
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DECISION TREES
▸ Decision trees divide the data feature space into a set of hypercubes that are 

classified as signal (+1) or background (-1) like. 

▸ Each region can be fitted with a constant to represent the data in that region. 

▸ We can recursively continue to sub-divide the data until some minimum number 
of examples are left in each sub-division.
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Example feature space 
described by X={x1, x2}

Can describe the data 
as the root node.
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DECISION TREES
▸ Decision trees divide the data feature space into a set of hypercubes that are 

classified as signal (+1) or background (-1) like. 

▸ Each region can be fitted with a constant to represent the data in that region. 

▸ We can recursively continue to sub-divide the data until some minimum number 
of examples are left in each sub-division.
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x2The data get divided 
into two partitions.

Cut on the feature 
space to separate the 
data into two different 
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DECISION TREES
▸ Decision trees divide the data feature space into a set of hypercubes that are 

classified as signal (+1) or background (-1) like. 

▸ Each region can be fitted with a constant to represent the data in that region. 

▸ We can recursively continue to sub-divide the data until some minimum number 
of examples are left in each sub-division.

�7

x1

x2
Divide the data again

The feature space gets 
further sub-divided.x1 < A

-1 +1 +1-1

x2 < B x2 < C



A. Bevan

MULTIVARIATE ANALYSIS AND ITS USE IN HIGH ENERGY PHYSICS: DECISION TREES

DECISION TREES
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DECISION TREES
▸ The set of rectangular cuts applied to the 

data allow us to build a tree from the root 
note.  

▸ We can impose limits on: 

▸ Tree depth (how many divisions are 
performed). 

▸ Node size (how many examples per 
partition). 

▸ Trees can be extended to more than 2 
categories. 

▸ They lend themselves to classifying 
examples or adapted to make a 
quantitative prediction (regression)
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The decision tree output for a 
classification problem is
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A Decision tree is what is known as a weak 
learner.  It can take the input features in X, even 
when they are weakly separating, and combine 

those features to increase the separation. 

A single tree is susceptible to overtraining 
(learning the statistical fluctuations in the training 

data) 

As we shall see weak learners can be combined 

G(x) = + 1 or  − 1

The decision tree output for a 
classification problem is
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BOOSTING
▸ If a training example has been mis-classified in a training epoch, then 

the weight of that event can be increased for the next training epoch; 
so that the cost of mis-classification increases. 

▸ The underlying aim is to take a weak learner and try and boost this 
into becoming a strong learner. 

▸ This example re-weighting technique is called boosting. 

▸ There are several re-weighting methods commonly used; here we 
discuss: 

▸ AdaBoost.M1 (popular variant of the Adaptive boosting method) 

▸ Boosted Decision Trees are known as BDTs
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Freund and Schapire J. Jap. Soc. AI 14 (1999) 771-780 
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BOOSTING: AdaBoost.M1
▸ i is the ith example out of a data set with N examples. 
▸ m is the mth training out of an ensemble of M learners to be trained. 

▸ Step 1: 
▸ Assign event weights of 𝑤i = 1/N to all of the N examples. 

▸ Step 2: for m=1 through M 
▸ Train the weak learner (in our case this is a BDT): 
▸ Compute the error rate 
▸ Calculate the boost factor                          and reweight examples  

▸ Step 3: 
▸ Return the weighted committee: a combination of the M trees that have been 

learned from the data.
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Freund and Schapire J. Jap. Soc. AI 14 (1999) 771-780 

βi =
εi

1 − εi

εi
Gm(x)
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BOOSTING: AdaBoost.M1
▸ m=1 

▸ m=2 

▸ m=3 

▸ m=M
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Freund and Schapire J. Jap. Soc. AI 14 (1999) 771-780 

G(x) = sign (
M

∑
m=1

ln [ 1 − εm

εm ] Gm(x))

INITIAL TRAINING SAMPLE

WEIGHTED SAMPLE

WEIGHTED SAMPLE

WEIGHTED SAMPLE

G1(x)

G2(x)

G3(x)

GM(x)

The Gm(x) are individual 
weak learners; each is 
derived from a training 
using the data.   

The m=1 training uses 
the original data; all 
subsequent trainings 
use reweighted data. 

The final classifier 
output is formed from a 
committee that is a 
weighted majority vote 
algorithm.
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BOOSTING
▸ Another popular boosting method is GradBoost. 

▸ This uses some loss function (we will discuss these later 
when talking about optimisation) and determines the 
gradient with respect to the model prediction.  

▸ See for example Ch. 10 of Hastie for more details.
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J. Friedman, The Annals of Statistics 2001, 29, No. 5, 1189–1232 
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BAGGING: BOOTSTRAP AGGREGATING
▸ To overcome the issue of learning the statistical fluctuations of the 

training set, we can prepare bootstrap samples of data. 

▸ The sample of training data are resampled, and for each of the 
resampled sets a decision tree is trained. 

▸ The decisions of all of the models learned are combined by 
majority voting. 

▸ i.e. if an example is found to be signal more times than background, 
then it is classified as signal. 

▸ We can also ascribe a number between 0 and 1 for an example; this 
would just be the fraction of times that the resampled trees assigned 
the label “signal” to an example. 
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B. Efron, 1979, Ann. Stat 7 (1) 1-28 
L. Breiman, Machine Learning 24 (1996) 123-140; J. R. Quinlan, Proc. AAAI 1996 725-730
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BAGGING: BOOTSTRAP AGGREGATING
▸ The purpose of this method is to reduce the error on the 

prediction of the decision tree algorithm.
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B. Efron, 1979, Ann. Stat 7 (1) 1-28 
L. Breiman, Machine Learning 24 (1996) 123-140; J. R. Quinlan, Proc. AAAI 1996 725-730

From: J. R. Quinlan, Proc. 
AAAI 1996 725-730
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B. Efron, 1979, Ann. Stat 7 (1) 1-28 
L. Breiman, Machine Learning 24 (1996) 123-140; J. R. Quinlan, Proc. AAAI 1996 725-730

From: J. R. Quinlan, Proc. 
AAAI 1996 725-730

Bagging and boosting lead to better classifiers (smaller errors) for al 27 
data sets studied by Quinlan. 

Boosting is superior to Bagging on 20 of the 27 datasets.

Bagged

Boosted Bagged

Boosted
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RANDOM FORESTS
▸ Bagging involves oversampling the data for a given tree 

configuration in order to make a majority vote decision on 
the classification of an example, or to compute a 
regression output. 

▸ Random Forests (RFs) are an extension of bagged decision 
trees that use bootstrap samples of data, and grow an 
ensemble of randomly different trees Tb. 

▸ The output of the ensemble can be used to perform 
regression and classification tasks.
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RANDOM FORESTS
▸ Step 1: b = 1 to B bootstrap samples 
▸ Create a bootstrap sample of size N from the training data. 
▸ Grow a random forest of trees, Tb, by repeatedly following the steps below for 

each terminal node, until some minimum node size is reached 
▸ Randomly selecting m variables to create the tree 
▸ Pick the best split point among the m 
▸ Split the node into two daughter nodes 

▸ Step 2: 
▸ Output the ensemble of trees given by            . 

▸ Step 3: 
▸ For some new example x, make a prediction: 
▸ Regression:  

▸ Classification: majority vote of the             predictions for the example x. 
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OVERTRAINING CHECK IN TMVA
▸ How do you tell if an MVA is overtrained? 
▸ It turns out there is no general agreement on how to do this.  

Many similarity metrics that can be found in the literature. 
▸ TMVA has an “overtraining check” implemented: a binned KS 

test (known to be biased).
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Example overtrained BDT from Tom Stevenson; PhD thesis CERN-THESIS-2018-119.

If a BDT is overtrained then the output 
distribution will be different for test and 
training samples. 

The KS probability recorded in this plot is 
not correct.  It is a binned, rather than un-
binned computation that is biased toward 
small probabilities. 

A large probability means the test and 
training data agree, a small probability 
don’t necessarily mean they disagree.  
However in this case the signal is clearly 
overtrained.

https://cds.cern.ch/record/2634914
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▸ How do you tell if an MVA is overtrained? 
▸ It turns out there is no general agreement on how to do this.  

Many similarity metrics that can be found in the literature. 
▸ TMVA has an “overtraining check” implemented: a binned KS 

test (known to be biased).
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Example SVM (not overtrained) from Tom Stevenson; PhD thesis CERN-THESIS-2018-119.

If an MVA (this is an SVM) is not 
overtrained then the output distribution 
will be similar for test and training 
samples. 

In this case both signal and background 
have large KS probabilities, so even 
though the binned KS is biased, we 
conclude that this model is not 
overtrained (in contrast to the BDT shown 
on the previous page that was trained for 
the same problem with the same data).

https://cds.cern.ch/record/2634914
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EXAMPLES: MINIBOONE
▸ The first experiment to start using BDTs was MiniBooNE.   

▸ Following on from the introduction of these methods into 
particle physics the techniques became popular. 

▸ In part this will have been because of the comparative ease of 
understanding. 

▸ The availability of algorithms to apply to data will have 
facilitated the use of BDTs in HEP. 

▸ Nowadays BDTs are more commonly used than the 
previously well established approaches (e.g. neural 
networks).
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H.-J. Yang et al., Nucl.Instrum.Meth. A555 (2005) 370-385



A. Bevan

MULTIVARIATE ANALYSIS AND ITS USE IN HIGH ENERGY PHYSICS: DECISION TREES

EXAMPLES: MINIBOONE
▸ The MiniBooNE physics programme was to confirm or 

refute the LSND anomaly of                  with Δm2 ~1 (eV/c2)2 

▸ BDTs were used for background suppression. 
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H.-J. Yang et al., Nucl.Instrum.Meth. A555 (2005) 370-385

νμ → νe
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EXAMPLES: BABAR
▸ The SLAC-based particle physics experiment was built to 

discover CP violation in the B meson system. 
▸ Charged particle identification was a key requirement of 

the programme. 
▸ BDTs were one MVA tool used to perform particle 

identification.
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A. Bevan et al., Eur. Phys. J. C74 (2014) 3026

Several sub-systems provided 
measurement information that was fed 
into different MVA methods to identify 
charged particles, and to quantify mis-
id rates. 

This table shows typical performance 
achieved for μ and K identification.
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DECISION TREES (REFLECTION)
▸ We can use a set of rectangular cuts - each equivalent to applying a Heavyside 

function as a decision boundary on the data. 
▸ Decision trees (including boosted, bagged, RFs) are based on this approach. 

▸ We have not explored using a hyperplane given by                      to separate 
signal from background. 
▸ Note: This hyperplane has the same functional form as the Fisher linear 

discriminant. 
▸ In 2D this becomes the constraint                                    .  

▸ We will explore this aspect when looking at neural networks and support 
vector machines.
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SUMMARY
▸ Decision trees are extensions of a cut based approach that allow weak 

learners to be trained. 

▸ Various methods have been developed (including boosting and 
bagging) to promote strong learners to be developed from the 
underlying weak learners. 

▸ The concepts of decision trees can be extended to random forests. 

▸ A significant advantage of these algorithms is that they are (relatively) 
straightforward to understand and interpret, in comparison with some 
of the other methods we will discuss in the remainder of these 
lectures. 

▸ BDTs generally perform well when applied to HEP problems.
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SUGGESTED TOOLS
▸ Many decision tree tools exist that you may wish to 

explore.  A selection of these are linked below: 

▸ TMVA 

▸ SciKitLearn 

▸ XGBoost 

▸ In addition to Python and C++ based tools, you will find 
decision trees implemented in R, Matlab, Mathmatica etc.
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https://root.cern.ch/tmva
http://scikit-learn.org/stable/modules/tree.html
https://pypi.org/project/xgboost/
https://www.mathworks.com/help/stats/decision-trees.html;jsessionid=e32607cb6849f9365b56e83ddaee
https://reference.wolfram.com/search/?q=decision%20tree
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SUGGESTED READING (NON-HEP)
▸ In addition to the references given in the slides you may 

be interested in: 

▸ Hastie, Tibshirani and Friedman, The Elements of 
Statistical Learning, Springer (2011).
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https://web.stanford.edu/~hastie/ElemStatLearn/
https://web.stanford.edu/~hastie/ElemStatLearn/
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APPENDIX
▸ AdaBoost (original form); this was superseded by the 

AdaBoost.M1 variant after a period of theoretical and 
empirical study of performance.   

▸ Normally when people talk about using an AdaBoost in 
HEP they are referring to the AdaBoost.M1 algorithm.
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BOOSTING: ADABOOST (THE ORIGINALLY PROPOSED FORM)
▸ Compute the error rate 𝜀m for a given weak learner (e.g. the decision 

tree for a given training epoch) for some example xi resulting in some 
distribution Dm(xi). 

▸ Each hypothesis ht (=0, 1) that differers from the example label yt 
contributes to the error. 

▸ Compute an event weight based on this; given by 

▸ re-weight the misclassified example such that: 

▸ where
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Freund and Schapire J. Jap. Soc. AI 14 (1999) 771-780; J. Comp. and Syst Sciences 55 (1997) 119-139 

βm =
1
2

ln ( εm

1 + εm )

εm = ∑
i=hm(xi)≠ym

Dm(xi)

wm+1
i = wm

i β(1−|hm(xi)−yi|)
m

M

∑
m=1

(ln 1/βm)hm(x) ≥
1
2

M

∑
m=1

(ln 1/βm)if 

otherwise


