

Super Flavour Factories:

DESY Zeuthen, Berlin 5th May 2010

Conceptual Design Report: arXiv:0709.0451 Valencia Workshop Report: arXiv:0810.1312 http://web.infn.it/superb/

Overview

- What is SuperB?
- Physics Case in the LHC era
- Accelerator Aspects
- Detector Design
- Current Status
- A few words about Belle-II
- Summary

What is SuperB?

SuperB in a Nutshell

- High Luminosity e⁺e⁻ collider.
- Aim to reach $\mathcal{L} \ge 10^{36} \text{ cm}^{-2} \text{s}^{-1}$.
- Low emittance operation.
- Utilize 'crab waist' technique (now tested and proven to work).
- Stable accelerator design:
 - Approved by Machine Advisory Committee.
- Commission as early as 2015.
- Strong international interest in this physics: >300 Conceptual Design Report signatories from:

- Physics Goal:
 - Elucidate new physics in the LHC era as thoroughly as possible.
- Two possible sites in the suburbs of Rome:
 - INFN LNF (Frascati)/ESRA [A]
 - Tor Vergata Campus (Rome II) [B]

- Aims to constrain flavour couplings of new physics at high energy:
 - Refine understanding of nature if new physics exists at high energy.
 - We need to test the ansatz that new physics might be flavour blind:
 - Case 1: trivial solution \rightarrow Reject more complicated models.
 - Case 2: non-trivial solution \rightarrow Reject flavour blind models.

Quarks and neutrinos have non-trivial couplings. e,g, the CKM matrix in the Standard Model of particle physics. How far fetched is a trivial flavour blind new physics sector?

$$J^{\mu} = (\overline{u}, \overline{c}, \overline{t}) \frac{\gamma^{\mu} (1 - \gamma^5)}{2} \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}s_{13} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

- Aims to constrain flavour couplings of new physics at high energy:
 - Refine understanding of nature if new physics exists at high energy.
 - We need to test the ansatz that new physics might be flavour blind:
 - Case 1: trivial solution \rightarrow Reject more complicated models.
 - Case 2: non-trivial solution \rightarrow Reject flavour blind models.

and similarly for $M^2_{\tilde{u}}$

 Δ 's are related to New Physics mass scale.

- Aims to constrain flavour couplings of new physics at high energy:
 - If the LHC doesn't find new physics: SuperB indirectly places constraints beyond the reach of the LHC and SLHC.
 - and if the LHC does find new physics, there is even more work to do at SuperB.
 - Some of the examples of this will follow shortly...

SuperB

- The measurements to be made at SuperB fall into two categories:
 - New physics sensitive goals of the experiment
 - Some of these physics processes will be discussed in a moment: B, D, τ, Y,
 - This is why we want to build SuperB!
 - Standard Model calibrations (I won't talk about this much)
 - This is how we validate our understanding of the detector: repeating measurements done by BaBar/ Belle and LHCb.
 - The equivalent of doing W, Z and PDF physics at ATLAS/CMS.

Case studies:

- **1. Lepton Flavour Violation**: T decay as an example of many LFV measurements possible at SuperB.
- **2. Neutral Higgs A0**: what can the flavour sector add to high p_T searches?
- 3. Charged Higgs: what do we know; what will LHC tell us; what does SuperB add?
- 4. ΔS measurements: high mass particle interferometry.

Physics Case in the LHC era

Why is a Super Flavour Factory like SuperB relevant when we have the energy frontier experiments and LHCb?

What is the minimum data set to make sure that we are doing something sensible?

Charged Lepton Flavour Violation

- LHC is *not* competitive (Re: ATLAS, CMS, and LHCb).
- 80% polarised e⁻ beam helps reduce SM background.
- SuperB sensitivity ~10 50× better than New Physics allowed branching fractions.

May 2010

- LHC is *not* competitive (Re: ATLAS, CMS, and LHCb).
- 80% polarised e⁻ beam helps reduce SM background.
- SuperB sensitivity ~10 50× better than New Physics allowed branching fractions.

May 2010

- $\tau \rightarrow \mu\gamma$ upper limit can be correlated to θ_{13} (neutrino mixing/CPV, T2K etc.) and also to $\mu \rightarrow e\gamma$. SUSY seasaw = CMSSM + $3v_R$ + \tilde{v}
- Complementary to flavour ٠ mixing in quarks.
- Golden modes: ۲
 - $-\tau \rightarrow \mu\gamma$ and 3μ .
- e⁻ beam polarization: ۲
 - Lower background
 - Better sensitivity than competition!
- e⁺ polarization may be used later in programme.
- CPV in $\tau \rightarrow K_S \pi v$ at the level of ~10⁻⁵. ٠
- Added Bonus: ٠
 - Can also measure τ g-2 (polarization is crucial).
 - $\sigma(g-2) \sim 2.4 \times 10^{-6}$ (statistically dominated error).

 10^{-11}

BR ($\tau \rightarrow \mu \gamma$)

10

 10^{-10}

Use $\mu \gamma/3I$ to distinguish SUSY vs. LHT.

10⁻¹⁰

 10^{-10}

10⁻⁸

10⁻⁷

- $\tau \rightarrow \mu \gamma$ upper limit can be correlated to θ_{13} (neutrino mixing/CPV, T2K etc.) and also to $\mu \rightarrow e \gamma$. SUSY seasaw = CMSSM + $3\nu_R + \tilde{\gamma}$
- Complementary to flavour mixing in quarks.
- Golden modes:
 - $-\tau \rightarrow \mu \gamma$ and 3μ .
- e⁻ beam polarization:
 - Lower background
 - Better sensitivity than competition!
- e⁺ polarization may be used later in programme.
- CPV in $\tau \rightarrow K_S \pi v$ at the level of ~10⁻⁵.
- Added Bonus:
 - Can also measure τ g-2 (polarization is crucial).
 - σ (g-2) ~2.4 ×10⁻⁶ (statistically dominated error).

Herreo et al. 2006 10⁻⁸ SPS 1a $m_{N1} = 10^{10} \text{ GeV}, m_{N2} = 10^{11} \text{ GeV}$ 10⁻⁹ $m_{...} = 10^{-5} eV$ 10⁻¹⁰ , MEG (now) BR ($\mu \rightarrow e \gamma$) $\theta_3 = 0$ 10⁻¹¹ 10⁻¹² MEG (design) <u>m_{N13} = 10</u>¹⁴ Ge√ 10⁻¹³ $\theta_{13} = \theta_{13} =$ 10⁻¹⁴ $m_{N3} = 10^{13} \text{ GeV}$:5° 10⁻¹⁵ ^{[m}_{N3} = 10¹² Ge∖ 10⁻⁸ 10⁻¹⁰ 10^{-11} 10⁻⁷ 10^{-10}

Use $\mu\,\gamma/3I$ to distinguish SUSY vs. LHT.

BR ($\tau \rightarrow \mu \gamma$)

- $\tau \rightarrow \mu \gamma$ upper limit can be correlated to θ_{13} (neutrino mixing/CPV, T2K etc.) and also to $\mu \rightarrow e \gamma$. SUSY seasaw = CMSSM + $3\nu_R + \tilde{\nu}$
- Complementary to flavour mixing in quarks.
- Golden modes:
 - $-\tau \rightarrow \mu \gamma$ and 3μ .
- e⁻ beam polarization:
 - Lower background
 - Better sensitivity than competition!
- e⁺ polarization may be used later in programme.
- CPV in $\tau \rightarrow K_S \pi v$ at the level of ~10⁻⁵.
- Added Bonus:
 - Can also measure τ g-2 (polarization is crucial).
 - σ (g-2) ~2.4 ×10⁻⁶ (statistically dominated error).

Herreo et al. 2006 10⁻⁸ SPS 1a erB $m_{N1} = 10^{10} \text{ GeV}, m_{N2} = 10^{11} \text{ GeV}$ 10⁻⁹ $m_{...} = 10^{-5} eV$ 10⁻¹⁰ , MEG (now) BR ($\mu \rightarrow e \gamma$) $\theta_3 = 0$ 10⁻¹¹ 10⁻¹² MEG (design) $m_{N2} = 10^{14} \text{ GeV}$ 10⁻¹³ θ₁₃ = 10⁻¹⁴ $m_{N3} = 10^{13} \text{ GeV}$:5° 10⁻¹⁵ ^{[m}_{N3} = 10¹² Ge∖ 10⁻⁸ 10⁻¹⁰ 10^{-11} 10⁻⁷ 10⁻⁹ BR ($\tau \rightarrow \mu \gamma$)

Use $\mu\,\gamma/3I$ to distinguish SUSY vs. LHT.

 $\begin{array}{ll} m_{\tilde{q}} = 300 \, GeV & {\sf BLUE} \\ m_{\tilde{q}} = 500 \, GeV & {\sf RED} \end{array}$

- SU(5) SUSY GUT Model (arXiv :0710.5443, Parry and Zhang).
- Model has non-trivial SUSY squark couplings.
- Current B_S mixing measurement favours B($\tau \rightarrow \mu\gamma$)>3×10⁻⁹.
- Need SuperB to probe to this sensitivity.

N.B. Different New Physics Models have different features, and different hierarchies!

- SU(5) SUSY GUT Model (arXiv :0710.5443, Parry and Zhang).
- Model has non-trivial SUSY squark couplings
- Current B_S mixing measurement favours B($\tau \rightarrow \mu\gamma$)>3×10⁻⁹.
- Need SuperB to probe to this sensitivity.

N.B. Different New Physics Models have different features, and different hierarchies!

- SU(5) SUSY GUT Model (arXiv :0710.5443, Parry and Zhang).
- Model has non-trivial SUSY squark couplings
- Current B_S mixing measurement favours B($\tau \rightarrow \mu\gamma$)>3×10⁻⁹.
- Need SuperB to probe to this sensitivity.

N.B. Different New Physics Models have different features, and different hierarchies!

Some Higgs Phenomenology

N.B. The SM Higgs (within CMSSM) can also be constrained using b to s γ , g-2 and Ω_{CDM} . SuperB has input to s γ and the g-2 constraints. e.g. See: Weiglein et al. arXiv:0707.3447

Here I show two non-SM scenarios.

CMSSM: LHC/SuperB complementarity

Current analysis of data prefers tanβ~10. _{EPJC 57 183-307 (2008).} May 2010 Blue = LHC:

- Will be able to measure m(A) [CP odd Higgs mass]
- Poor sensitivity to tanβ [ratio of Higgs vevs]
- •Poor sensitivity to A [coupling]

<u>Red=LHC+EW/Low-energy</u> constraints (includes SuperB):

Observable	Constraint	theo. error
$R_{\mathrm{BR}_{b \to s\gamma}}$	1.127 ± 0.1	0.1
$R_{\Delta M_s}$	0.8 ± 0.2	0.1
$BR_{b \rightarrow \mu\mu}$	$(3.5\pm0.35) imes10^{-8}$	$2 imes 10^{-9}$
$R_{\mathrm{BR}_{b \to \tau \nu}}$	0.8 ± 0.2	0.1
Δa_{μ}	$(27.6\pm 8.4) imes 10^{-10}$	$2.0 imes 10^{-10}$
$M_W^{ m SUSY}$	$80.392\pm0.020\mathrm{GeV}$	0.020 GeV
$\sin^2 heta_W^{ m SUSY}$	0.23153 ± 0.00016	0.00016
M_h^{light} (SUSY)	$> 114.4{ m GeV}$	$3.0{ m GeV}$

CMSSM: LHC/SuperB complementarity

Blue = LHC:

- Will be able to measure m(A) [CP odd Higgs mass]
- Poor sensitivity to tanβ [ratio of Higgs vevs]
- •Poor sensitivity to A [coupling]

Red=LHC+EW/Low-energy constraints (includes SuperB):

• Can build on the m(A) measurement to measure tanβ.

Again LHC and SuperB are complementary experiments. Each can contribute significantly to the knowledge of new physics.

Charged Higgs: $B^{\pm} \rightarrow \tau^{\pm} \nu$

- Within the SM, sensitive to f_B and $|V_{ub}|$: $\mathcal{B}_{SM} \sim 1.6 \times 10^{-4}$.
- \mathcal{B} affected by new physics.
 - MFV models like 2HDM / MSSM.
 - Unparticles.

$$\mathcal{B}_{S\mathcal{M}}(B^+ \rightarrow l^+ v_l) = \frac{G_F^2 m_B m_l^2}{8\pi} \left(1 - \frac{m_l^2}{m_B^2}\right) f_B^2 |V_{ub}|^2 \tau_B$$

 (H^{+},W^{+})

b

• Fully reconstruct the event (modulo v)

Charged Higgs

B-factory searches competitive with LHC era: e.g. 2HDM

Charged Higgs

- Multi TeV search capability for large tanβ.
- Includes SM uncertainty ~20% from V_{ub} and f_B .

B-factories actually have 1.5ab⁻¹ of data: ATLAS sensitivity sketched from combined sensitivity plots in arXiv:0901.0512.

Time-dependent CP Violation as a New Physics probe

- β=(21.1±0.9)° from Charmonium decays.
- Look in many different b→s and b→d decays for sin2β deviations from the SM:
- The golden channel is:

 Deviations would be from high mass particles in loops: H, χ, ...
 May 2010

- The SM uncertainty is strongly mode dependent.
- Golden modes have to be well measured and theoretically clean.
- Prefer to also have robust constraints from more than one theoretical approach.
- Precision measurements of the reference Charmonium decay also have a small SM uncertainty.

- QCDF Cheng, Chua, Soni PRD72, 014006 (2005); PRD 74 094001 (2005)
- SU(3) Gronau, Rosner, Zupan PRD74 093003 (2006)
- QCDF Buchalla, Hiller, Nir, Raz, JHEP 09, 074 (2005)
- Li and Mishima PRD74, 094020 (2006)

- We were reminded that we should be careful with what we compare:
 - New Physics could affect cc̄s sin2β.
- 1) Predict $sin 2\beta$ from indirect constraints.

 $[\sin(2\beta)]_{\text{no}V_{ub}}^{prediction} = 0.87 \pm 0.09.$

- 2) Compare to ccs measurement. $[\sin 2\beta]_{c\bar{cs}} = 0.672 \pm 0.023$
- 3) Compare to clean penguin measurements. $[\sin 2\beta]_{b \to s-penguin}^{clean} = 0.58 \pm 0.06$

(or the average of the two) Are these 2.1-2.7 σ hints for new physics?

Lunghi and Soni, Phys.Lett.B**666** 162-165 (2008). Buras and Guadagnoli Phys Rev D **78** 033005 (2008).

 Can theory error be reduced for other modes?

Mode	Curre	ent Pr	ecision	Predi	cted P	recision $(75 ab^{-1})$	Discovery	Potential
	Stat.	Syst.	Th.	Stat.	Syst.	Th.	3σ	5σ
$J/\psi K_S^0$	0.022	0.010	< 0.01	0.002	0.005	< 0.001	0.02	0.03
$\eta' K^0_S$	0.08	0.02	0.014	0.006	0.005	0.014	0.05	0.08
$\phi K^0_S \pi^0$	0.28	0.01	—	0.020	0.010	_	0.07	0.11
$f_0K_S^0$	0.18	0.04	0.02	0.012	0.003	0.02	0.07	0.12
$K^0_S K^0_S K^0_S$	0.19	0.03	0.013	0.015	0.020	0.013	0.08	0.14
ϕK^0_S	0.26	0.03	0.02	0.020	0.010	0.005	0.09	0.14
$\pi^0 K^0_S$	0.20	0.03	0.025	0.015	0.015	0.025	0.10	0.16
ωK^0_S	0.28	0.02	0.035	0.020	0.005	0.035	0.12	0.21
$K^+K^-K^0_S$	0.08	0.03	0.05	0.006	0.005	0.05	0.15	0.26
$\pi^0\pi^0K^0_S$	0.71	0.08	—	0.038	0.045	—	0.18	0.30
$ ho K_S^0$	0.28	0.07	0.14	0.020	0.017	0.14	0.41	0.61
$J/\psi\pi^0$	0.21	0.04	_	0.016	0.005	—	0.05	0.08
$D^{*+}D^{*-}$	0.16	0.03	_	0.012	0.017	_	0.06	0.11
D^+D^-	0.36	0.05	_	0.027	0.008	—	0.09	0.14

Precision CKM

- CKM is a 36 year old ansatz.
- Works at the 10% level
- No underlying physical insight.
- Small new physics contributions not ruled out (% level).

Precision CKM from SuperB will open up more new physics search opportunities: e.g. K **→** πνν:

K⁺ decay has a similar error budget.

Suner B	B physics @ Y(4	4S)	Variety of measurements for any observable				
Observable	B Factories (2 ab^{-1})	SuperB (75 ab^{-1})	Observable	B Factories (2 ab^{-1})	Super B (75 at		
$\sin(2eta)~(J/\psi~K^0)$	0.018	0.005 (†)		2007	107 (1)		
$\cos(2eta)~(J/\psiK^{*0})$	0.30	0.05	$B(B \to \tau \nu)$	20%	4% (†)		
$\sin(2eta)~(Dh^0)$	0.10	0.02	$\mathcal{B}(B \to \mu \nu)$	visible	5%		
$\cos(2eta)~(Dh^0)$	0.20	0.04	$\mathcal{B}(B \to D\tau\nu)$	10%	2%		
$S(J/\psi \ \pi^0)$	0.10	0.02					
$S(D^+D^-)$	0.20	0.03	$\mathcal{B}(B o ho \gamma)$	15%	3% (†)		
$\alpha \ (B \to \pi \pi)$	$\sim 16^{\circ}$	3°	$\mathcal{B}(B ightarrow \omega \gamma)$	30%	5%		
$\alpha \ (B \to \rho \rho)$	$\sim 7^{\circ}$	1-2° (*)	$A_{CP}(B \to K^*\gamma)$	0.007 (†)	0.004 († *)		
$\alpha \ (B \to \rho \pi)$	$\sim 12^{\circ}$	2°	$A_{CP}(B \to \rho \gamma)$	~ 0.20	0.05		
α (combined)	$\sim 6^{\circ}$	$1-2^{\circ}$ (*)	$A_{CP}(b ightarrow s\gamma)$	0.012 (†)	0.004 (†)		
$\gamma (B \to DK, D \to CP \text{ eigensta})$	ttes) $\sim 15^{\circ}$	2.5°	$A_{CP}(b \rightarrow (s+d)\gamma)$	0.03	0.006 (†)		
$\gamma (B \to DK, D \to \text{suppressed})$	states) $\sim 12^{\circ}$	2.0°	$S(K^0\pi^0\gamma)$	0.15	0.02 (*)		
$\gamma (B \to DK, D \to \text{multibody s})$	states) $\sim 9^{\circ}$	1.5°	$S(\rho^0 \gamma)$	possible	0.10		
$\gamma (B \rightarrow DK, \text{ combined})$	~ 6°	1-25		possible	0.10		
$2\beta + \gamma \left(D^{(\gamma)-\pi+}, D^+K_S^{\circ\pi+}\right)$	20-	5-	$A_{CP}(B \to K^*\ell\ell)$	7%	1%		
$S(\phi K^0)$	0.13	0.02~(*)	$\frac{A^{FB}(B \to K^*\ell\ell)s_0}{A^{FB}(B \to K^*\ell\ell)s_0}$	25%	9%		
$S(\eta' K^0)$	0.05	0.01 (*)	$A^{FB}(B \to X \ \ell \ell)_{\theta_{1}}$	2570	50%		
$> S(K_s^0 K_s^0 K_s^0)$	0.15	0.02(*)	$\begin{array}{c} A (D \rightarrow A_s cc) s_0 \end{array}$		0.007		
$S(K_s^0\pi^0)$	0.15	0.02(*)	$D(B \to K \nu \nu)$	VISIDIe	20%		
$S(\omega K^0_s)$	0.17	0.03 (*)	$B(B \to \pi \nu \bar{\nu})$	-	possible		
$S(f_0K^0_{\scriptscriptstyle S})$	0.12	$0.02\;(*)$	P	ossible also at LHC	<u>b</u>		
			Sin	nilar precision at LH	Cb		
$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)	Example of «	SuperB specific	cs »		
$ V_{cb} $ (inclusive) $ V_{cb} $ (exclusive)	1% (*)	0.5% (*) 3.0% (*)	inclusive in	addition to exclus	sive analyses		
$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)	channels wi	th π^0 , γ 's, ν , many	Ks		

perB τ physics (p	olarized bean	ns)	C	harm at Y	Y(4S) and the function of $Y(4S)$ and $Y(4S$	hreshold -	
Process	Sensitivity	=	Mode	Observable	B Factories (2 a	b^{-1}) SuperB (2)	75 ab^{-1}
1 2(10-9		$D^0 \to K^+ K^-$	y_{CP}	$2-3 \times 10^{-3}$	5 imes 1	0-4
$\mathcal{D}(\gamma \to \mu \gamma)$) 2 X 10 -		$D^0 \to K^+ \pi^-$	y'_D	$2-3 \times 10^{-3}$	7×1	0-4
${\cal B}(au o e \gamma)$	$2 imes 10^{-9}$			x'_D^2	$1-2 \times 10^{-4}$	3×1	0-3
$\mathcal{B}(\tau \to \mu \mu)$	$(\mu) = 2 \times 10^{-10}$		$D^0 \to K_S^0 \pi^+ \pi^-$	y_D	$2-3 \times 10^{-3}$ $2-3 \times 10^{-3}$	5×1	0-4
D(1 p)	$\sum_{i=1}^{n} \frac{10}{2 \times 10}$	_	Average	2D 2D	$\frac{2-3 \times 10}{1-2 \times 10^{-3}}$	3 × 1	$\frac{0}{0^{-4}}$
$\mathcal{B}(\tau \to eee)$	$) 2 \times 10^{-10}$		Tronago	x_D	$2-3 \times 10^{-3}$	5×1	0-4
$\mathcal{B}(au o \mu \eta)$	$4 imes 10^{-10}$		$D^0 \rightarrow K^+ \pi^-$	x' ²		3 × 10) ⁻⁵
$\mathcal{B}(\tau \rightarrow en)$	6×10^{-10}			y'	ated	7×10	$)^{-4}$
	\sim	_	$D^0 \rightarrow K^+ K^-$ $D^0 \rightarrow K^0 \pi^+ \pi^-$	y_{CP}	evalue	5×10 4.9×1	0^{-4}
$B(au o \ell K_s^0)$	$\frac{5}{3}$) 2 × 10 ⁻¹⁰		$D \rightarrow K_S \pi^+ \pi$	$x \\ y$	To be LHCo	3.5×1	0^{-4}
		_		q/p	al	3×10	$)^{-2}$
$\begin{array}{c c} \hline & \\ \hline \\ \hline$	Error with 1 ab^{-1} Error 0.16 ps^{-1} 0.07 ps^{-1} 20° 0.006 0.004 - 0.08 38% 16°	ror with 30 ab^{-1} 0.03 ps^{-1} 0.01 ps^{-1} 8° 0.004 0.004 $< 8 \times 10^{-9}$ 0.017 7% 6°		$\begin{array}{c} D^{0} \rightarrow e^{\pm}e^{-}, D^{0} \rightarrow \\ D^{0} \rightarrow \pi^{0}e^{\pm}e^{-}, D^{0} \rightarrow \\ D^{0} \rightarrow \eta e^{\pm}e^{-}, D^{0} \rightarrow \\ D^{0} \rightarrow K^{0}e^{\pm}e^{-}, L \rightarrow \\ D^{+} \rightarrow \pi^{\pm}e^{\pm}e^{-}, L \rightarrow \\ D^{+} \rightarrow \pi^{\pm}e^{\pm}\mu^{\mp} \rightarrow \\ D^{0} \rightarrow e^{\pm}\mu^{\mp} \rightarrow \\ D^{0} \rightarrow \pi^{0}e^{\pm}\mu^{\mp} \rightarrow \\ D^{0} \rightarrow \eta e^{\pm}\mu^{\mp} \rightarrow \\ D^{0} \rightarrow R^{0}e^{\pm}\mu^{\mp} \rightarrow \\ D^{0} \rightarrow K^{0}e^{\pm}\mu^{\mp} \end{array}$		1×10^{-8} 2×10^{-8} 3×10^{-8} 3×10^{-8} 1×10^{-8} 1×10^{-8} 2×10^{-8} 3×10^{-8} 3×10^{-8}	
$\beta_s \text{ from } B_s \to K^0 \overline{K}^0$ Bs : Definition	^{24°} vely better at L	HCb		$D^+ \to \pi^- e^+ e^+, I$ $D^+ \to \pi^- \mu^+ \mu^+, I$ $D^+ \to \pi^- e^\pm \mu^\mp I$	$D^+ \to K^- e^+ e^+$ $D^+ \to K^- \mu^+ \mu^+$ $D^+ \to K^- e^{\pm} \mu^{\mp}$	1×10^{-8} 1×10^{-8} 1×10^{-8}	
May 2010			_ <u>_</u>	$\gamma^{*} \rightarrow \pi^{*} e^{-} \mu^{*}, \Gamma$	$\nu^+ \rightarrow \kappa^- e^- \mu^+$	1 X 10 -	32

The Physics Case in 1 Page

 $\overline{\rho}$

The Golden Matrix

- Each mode is a golden signature of new physics.
 - A priori we need to measure them all!

	H^+	MFV	Non-MFV	NP	Right-handed	LTH SUSY
	high $\tan\beta$			Z-penguins	currents	
$\mathcal{B}(B \to X_s \gamma)$		\mathbf{L}	Μ		Μ	
$\mathcal{A}_{CP}(B \to X_s \gamma)$			\mathbf{L}		Μ	
$\mathcal{B}(B \to \tau \nu)$	L-CKM					
$\mathcal{B}(B \to X_s \ell \ell)$			Μ	Μ	Μ	
$\mathcal{B}(B \to K \nu \overline{\nu})$			Μ	\mathbf{L}		
$S_{K_S\pi^0\gamma}$					\mathbf{L}	
The angle β (ΔS)			L-CKM		\mathbf{L}	
$ au ightarrow \mu \gamma$						\mathbf{L}
$ au ightarrow \mu \mu \mu$						\mathbf{L}
+	charm	ן + נ	spectr	oscopy	y (DM /L	ight Hi

 When finished, the physics white paper will have a more complete matrix than the one shown here.

Accelerator Aspects

How can we obtain a data sample of 75ab⁻¹?

Crab waist tests at $DA\Phi NE$

May 2010

Crab waist tests at $DA\Phi NE$

Crab sextupoles give luminosity improvement of roughly factor 2. (Factor of 4 achieved in latest run!)

βy=25mm, Pw_angle=0.3

May 2010

Polarisation

- A unique feature of SuperB is a polarised e⁻ beam.
 - 80% polarisation from the outset.
 - Crucial to deliver on physics: Lower background for LFV measurements, τ EDM and g-2, and precision sin² θ_{W} .

searches that can be used to suppress background.

Use solenoids before and after
 IP to longitudinally polarise the electron beam.

With Polarised e⁻ beam, SuperB can measure $sin^2\theta_W$ as accurately as LEP.

SuperB→Results of two year work. Parameters as at 18/3/2010

		Base Line		Low Emittance		High Current		Tau/Charm (prelim.)		
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	
LUMINOSITY	cm ⁻² s ⁻¹	1.00	E +36	1.00E+36		1.00E+36		1.00E+35		
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61	
Circumference	m	125	8.4	125	i 8. 4	125	i 8. 4	425	8.4	
X-Angle (full)	mrad	6	6	6	6	6	6	6	6	
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15	
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32	
β _ν @ IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533	
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25	
e _x (without IBS)	nm	1.97	1.82	1.00	0.91	1.97	1.82	1.97	1.82	
e _x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4	
ε _y	pm	5	6.15	2.5	3.075	10	12.3	13	16	
σ _x @ IP	μm	7.214	8.672	5.099	8.274	10.060	12.370	18.749	23.076	
σ _y @ IP	μm	0.036	0.036	0.021	0.021	0.054	0.054	0.092	0.092	
Σx	μm	11.433		8.085		15.944		29.732		
Σ _y	μm	0.0	50	0.030		0.076		0.131		
σ∟ (0 current)	mm	4.69	4.29	4.73	4.34	4.03	3.65	4.75	4.36	
σ∟ (full current)	mm	5	5	5	5	4.4	4.4	5	5	
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766	
Buckets distance	#	2		2				1		
lon gap	%	2		2		2		2		
RF frequency	Hz	4.761	E+08	4.76E+08		4.76E+08		4.76E+08		
Harmonic number		19	98	1998		1998		1998		
Number of bunches		97	'8	97	78	19	56	1956		
N. Particle/bunch	_	5.08E+10	6.56E+10	3.92E+10	5.06E+10	4.15E+10	5.36E+10	1.83E+10	2.37E+10	
Tune shift x	-	0.0021	0.0033	0.0017	0.0025	0.0044	0.0067	0.0052	0.0080	
l une shift y	-	0.0970	0.0971	0.0891	0.0892	0.0684	0.0687	0.0909	0.0910	
Long. damping time	msec	13.4	20.3	13.4	20.3	13.4	20.3	26.8	40.6	
Energy Loss/turn	MeV	Z.11	0.865	Z.11	0.865	2.11	0.865	0.4	0.166	
σ _E (full current)	dE/E	6.43E-04	7.34E-04	6.43E-04	7.34E-04	6.43E-04	6.43E-04 7.34E-04		7.34E-04	
CM ore	dE/E	5.00	E-04	5.00	E-04	5.00E-04		5.26E-04		
Total lifetime	min	4.23	4.48	3.05	3.00	7.08	7.73	11.41	6.79	
Total RF Power	MW	17.	80	12	.72		.48	3.1		

Different solutions to reach 10³⁶

Baseline + other 2 options: •Lower y-emittance •Higher currents (twice bunches)

+ Solution for running at the Tau /charm threshold: $\mathcal{L} = 10^{35}$

SuperB→Results of two year work. Parameters as at 18/3/2010

		Base I	Line	Low Em	ittance	High C	urrent	Tau/Charm	(prelim.)	
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	
LUMINOSITY	cm ⁻² s ⁻¹	1.00E	+36	1.008	E+36	1.00E	+36	1.00E	+35	Different solutions t
Energy	GeV	6.7	4.18	6.7	4.18	6.7	4.18	2.58	1.61	rooch 10 36
Circumference	m	1258	.4	125	8.4	125	3.4	1258	4	reach 1000
X-Angle (full)	mrad	66		60	6	66		66		
Piwinski angle	rad	22.88	18.60	32.36	26.30	14.43	11.74	8.80	7.15	
β _x @ IP	cm	2.6	3.2	2.6	3.2	5.06	6.22	6.76	8.32	Recoline +
β _v @ IP	cm	0.0253	0.0205	0.0179	0.0145	0.0292	0.0237	0.0658	0.0533	Daseillie T
Coupling (full current)	%	0.25	0.25	0.25	0.25	0.5	0.5	0.25	0.25	other 2 options:
e _x (without IBS)	nm	1.97	1.82	1.00	0.91	1.97	1.82	1.97	1.82	al owor y omittane
ε _x (with IBS)	nm	2.00	2.46	1.00	1.23	2.00	2.46	5.20	6.4	·Lower y-emittanc
By	pm	5	6.15	2.5	3.075	10	12.3	13	16	 Higher currents
σ _x @ IP	μm	7.214	8.672	5.099	8.274	10.060	12.370	18.749	23.076	(twice bunches)
σ _y @ IP	μm	0.036	0.036	0.021	0.021	0.054	0.054	0.092	0.092	(three surrenes)
Σx	μm	11.43	33	8.0	85	15.9	44	29.73	32	
Σ _γ	μm	0.05	i0	0.0	30	0.0	76	0.13	1	_
σ _L (0 current)	mm	4.69	4.29	4.73	4.34	4.03	3.65	4.75	4.36	
σ∟ (full current)	mm	5	5	5	5	4.4	4.4	5	5	· Colution for
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766	+ Solution for
Buckets distance	#	2		2				1		running at the Tau
lon gap	%	2		2		2		2		
RF frequency	Hz	4.76E	+08	4.76	E+08	4.76E	+08	4.76E-	⊦08	/cnarm
Harmonic number	-			~						old: $f = 10^{35}$
Number of punches			ne :	Sun	erk	(FK	Вr	nacl	nin	e l'internet
Tune shift y										
Tune shift v		doo	ian		1 A / L	ook			him	ilor
Long. damping time	n	ues	SIG		VV I	JUK	5 V (ery a	5111	
Energy Loss/turn							_			
σ _E (full current)				to	thi	s de	nia	in		
CM o _E					UT III					
Total lifetime	min	4.23	4.48	3.05	3.00	7.08	7.73	11.41	6.79	
Total RF Power	MW	17.0		12.	72	30.	48	3.11		

SITES

- Identified two suitable sites for the SuperB project.
- Conceptual design works in both places.
- Both sites are geologically stable.
- Will make site decision soon after project approval.

 \square

Frascati Site: Potential HER Synch Radiation Beam Lines

Detector Design

Some parts of BaBar will be re-used:

- DIRC Quartz Bars
- Calorimeter Barrel (crystals + mechanical support)
- Superconducting Solenoid
- Absorber material from IFR

This will lead to significant cost saving in building the detector.

Options include:

- Several possible pixel technologies for the SVT (incl. an all pixel option).
- Forward PID.
- Backward calorimetry (primarily as a veto).
- •+ a number of other variants on baseline technology choices.

L0: Problem dominated by occupancy/flux:

r = 1.6cm (striplets), with a length of 10cm

Designed for rate of 100MHz/cm².

Alternative solutions: INMAPS / DNW MAPS / Hybrid Pixels.

INMAPS are an option for outer layers.

All Pixel SVT Concept

- Use INMAPS chips for a 5 layer all pixel vertex detector.
 - Adapt well understood leading STFC funded design to use with SuperB.
 - Common infrastructure for sub -system.
 - Physics studies required to understand performance (in progress) as part of detector optimisation.
 - UK has world leading expertise in this area.
 - Building on expertise and developments from SPiDeR and CALICE, LCFI ...
 - Concept well received by SuperB.

All Pixel SVT Concept

- Use INMAPS chips for a 5 layer all pixel vertex detector.
 - Adapt well understood leading STFC funded design to use with SuperB.
 - Common infrastructure for sub -system.
 - Physics studies required to understand performance (in progress) as part of detector optimisation.
 - UK has world leading expertise in this area.
 - Building on expertise and developments from SPiDeR and CALICE, LCFI ...
 - Concept well received by SuperB.

All Pixel SVT Concept

• 400Mpix CMOS Detector with stave approach:

Interaction Region Layout

- Aim:
 - Access SVT/permanent magnets in the IR within a few days.
 - Central cryostat/magnet SVT supported off of the same object.
 - Modifications/repairs on the innermost detector/accelerator components will be relatively quick to perform.

 Optimizing this subsystem from scratch: Disk/stepped endplates / cell size and geometry / gas mixture etc.

- Baseline shown (disk endplates).
- 10,000 cells.
- 3.5% av. occupancy (5% inner layers).
- Carbon Fibre endplates.

Studying response time vs. spatial resolution for various gas mixtures.

- Build on the DIRC concept: reuse the bars of fused silica that form the barrel of the DIRC.
- Instead of a water SOB, use a fused silica focussing block:
- (b) FBLOCK.

Example single photon response for a H-9500 MaPMT.

Many advantages over water based SOB design:

- Less sensitive to backgrounds: esp. neutrons.
- Can use timing to measure chromatic dispersion and improve performance.
- Modular.
- Less MaPMTs required for readout.
- No risk of water leaks into detector.
- Lower maintenance operation.

- Aerogel forward PID option could give additional performance benefits.
- Need to optimize vs. calorimeter performance.

EMC

- BaBar's EMC barrel (with modern readout) is good enough for SuperB.
- Forward Calorimeter: LYSO based end cap.
- Backward Calorimeter: scintillator option under study.

- 4 Layers of 5 crystals.
- 4500 Crystals in total.

May 2010

- 2.5cm² back face (tapers to front)
- PID diodes and APDs under study for signal readout.

 Optimizing understanding/performance of the calorimeter using simulation and a series of test beams.

•Clustering uses $\gamma > 1$ MeV.

54

- Baseline: Scintillating WLS fibre based system.
 - RPC/LST technology used on BaBar not suitable for rates at SuperB.
- Detector is a sandwich of scintillator and iron (similar to BaBar).
- BaBar's 5 X/X0 non optimal for µ ID; so SuperB will have more material.

Initial studies indicative of good performance achievable at SuperB.

Improvements in IFR detection capability will impact widely upon the physics programme:

- Decays with K_L
- LFV studies with μ final states
- LU tests.

- 2007: Conceptual Design Report
- 2009: Physics Workshop Proceedings
- 2010 (soon): White papers on Det/Acc/Phys.
- Current state of all aspects of the project.
 - Accelerator concept has been in good shape for a long time now.
 - Detector concept is well understood.
 - Physics interplay and sensitivity studies using SuperB Monte Carlo are continually being updated.
 - Expect funding decision soon (this year).
- Meanwhile:
 - Formalising R&D on TDR with MOUs.
 - Expect TDR by the end of the year.

- 2007: Conceptual Design Report
- 2009: Physics Workshop Proceedings
- 2010 (soon): White papers on Det/Acc/Phys ۲
- Current state of all aspects of the ۲
 - Accelerator concept has been now.
 - Detector concept
- Physics int mes using SuperB Monte Carle

- Me • ansing R&D on TDR with MOUs.
 - Expect TDR by the end of the year.

time

A few words concerning SuperB & Belle-II

- Similar concept: Belle-II has:
 - Target data sample: $50ab^{-1}$. ($\mathcal{L} \sim 0.8 \times 10^{36}$)
 - No polarisation: Limits physics case in some areas.
 - No plan (yet) to run at τ /charm threshold.
 - Now converging on the "Italian Scheme" for the accelerator.
 - Community agrees that this is the way to build the machine!

Experiment:	SuperB	Belle-II
E _{HER/LER}	6.7 / 4.18 GeV	7 / 4 GeV
I _{HER/LER}	< 3.5 A (both)	2.6 / 3.6 A
ε _x	2.8 / 1.6 nm	3.2 / 1.7 nm
εν	7 / 4 pm	13 / 8.4 pm
Ĺ	75ab ⁻¹	50ab ⁻¹
e ⁻ Polarisation	80%	none
run at ψ(3770)	yes	no

N.B. Some parameters for the experiments may change. The Belle-II accelerator concept is in the process of being re-worked from a high current to a low emmitance (Italian) one, so the total cost of both projects will be the about the same.

A few words concerning SuperB & Belle-II SuperB

A few words concerning SuperB & Belle-II

Summary

Hindsight always gives us 20:20 vision.

Until we have understood new physics, we are left trying to piece together the jigsaw puzzle of a high energy world where the possibilities are limited only by (a theorists) imagination.

Summary

- Want to elucidate new physics in as many ways as possible. Currently we:
 - Don't know the fine detail of New Physics.
 - Don't know the relevant New Physics energy scale (yet).
 - The LHC may, or may not elucidate this issue.
 - Don't know if the New Physics flavour sector is trivial or complicated:
 - Prior experience suggests it will be complicated.
 - But we do know that there are many models: 2HDM (type-n), MSSM, NMSSM, ...
 - Many *assume* flavour couplings are zero.

Summary

- The LHC won't be able to solve the SUSY flavour problem.
 - LHCb may help in a few specific channels: e.g. K*ll, B_s decays.
 - ATLAS/CMS may help with some ultra-rare B decays.
 - Some New Physics sensitive observables are accessible through studies at dedicated flavour experiments.
- A large number of observables are only measureable competitively at a Super Flavour Factory.
 - Need this to unravel the nature of new physics.

Extra Material

THE 2009 STATUS REPORT									
Hadronic matrix element	Lattice error in 2006	Lattice error in 2009	6 TFlop Year [2009]	60 TFlop Year [2011 LHCb]	1-10 PFlop Year [2015 SuperB]				
$f_{+}^{K\pi}(0)$	0.9%	0.5%	0.7%	0.4%	< 0.1%				
$\mathbf{\hat{B}}_{K}$	11%	5%	5%	3%	1%				
f _B	14%	5%	3.5 - 4.5%	2.5 - 4.0%	1-1.5%				
$f_{Bs}^{}B_{Bs}^{1/2}$	13%	5%	4 - 5%	3 - 4%	1-1.5%				
ξ	5%	2%	3%	1.5 - 2 %	0.5 – 0.8 %				
B → D/	4%	2%	2%	1.2%	0.5%				
I_+ ,	11%	11%	5.5 - 6.5%	4 - 5%	2-3%				
T_1^{B-hp}	13%	13%			3-4%				
The expected accuracy has been reached! (except for Vub)									

Particle Physics Landscape circa 2015

