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Generalisation	
!  We	generally	start	from	a	point	with	limited	statistics	to	
train	an	MVA.	

!  How	do	we	know	that	the	MVA	trained	is	suf=iciently	
general	to	behave	well	when	applied	to	new	data?	

!  This	problem	has	several	possible	solutions;	here	we	cover	
!  Regularisation	
!  Cross	validation	(CV)	

!  With	regard	to	selection	of	MVAs	we	also	discuss	the	
concept:	
!  Committee	of	MVAs	
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Generalisation	
!  One	can	consider	curve	=itting	as	an	example	of	over	=itting	
(following	the	discussion	in	Bishop,	Chapter	9).	
!  Given	N	data	points	generated	with	noise	randomly	from	some	
underlying	distribution	f(x),	we	can	approximate	the	function	with	a	
polynomial.	

!  Increasing	the	order	of	the	polynomial	means	that	we	can	ultimately	
obtain	a	perfect	=itting	result	at	the	data	points.			

!  However	this	provides	us	with	a	bad	approximation	of	the	function.	
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Generalisation	
!  Example:	

!  y=sin(x)	
!  noise	term	=	Gaussian	with	a	width	of	0.1	
!  Sample	of	9	points,	equally	spaced	in	x	

Dashed line corresponds to y=sin(x) 

Data are plotted as points (*) 

red line is a polynomial fit: 

There is poor agreement between the fit 
model and the data as the model is too 
simplistic.  We can increase the order of 
the polynomial to improve this. 

by = a+ bx
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Generalisation	
!  Example:	

!  y=sin(x)	
!  noise	term	=	Gaussian	with	a	width	of	0.1	
!  Sample	of	9	points,	equally	spaced	in	x	

Dashed line corresponds to y=sin(x) 

Data are plotted as points (*) 

red line is a polynomial fit: 

There is perfect agreement between the 
data and model at 9 of the points, but the 
model is poor between points. 
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An MVA generally has many more dimensions 
(defined by the number of weight parameters) to 
approximate.  As a result MVAs are prone to over 
fitting, and just because a training cycle has 
terminated, it does not mean that the result is not 
over trained (or in the case of SVMs over fitted) 



Regularisation	
!  The	problem	is	that	the	model	description,	with	respect	to	the	
underlying	true	description,	has	both	a	bias	and	variance	(e.g.	see	
Section	9.2	of	Bishop).			

!  Over	=itting	is	what	happens	when	the	model	is	=ine	tuned	to	
minimise	the	bias	at	the	cost	of	variance.	

!  We	need	to	balance	the	two	competing	factors.	
!  We	can	perform	regularisation	to	alleviate	this	issue	by	adding	a	
penalty	term	to	the	training	error	of	our	MVA.	

!  A	commonly	used	simple	form	of	regularisation	for	neural	
networks	is	weight-decay:	

E ! eE = E + ⌫⌦

⌦ =
1
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Regularisation	

8 

!  ν	is	a	tuneable	regularisation	parameter	used	to	help	
smooth	out	the	weight	contributions.			

!  ν	can	be	optimal,	too	large	or	too	small	and	is	another	factor	
that	needs	to	be	taken	into	account	when	training.	

!  In	order	to	determine	the	optimal	value	of	ν	we	have	to	
train	the	MVA	many	times,	scanning	through	different	
values	of	this	regularisation	parameter.	
!  The	optimal	value	minimises	the	error		

E ! eE = E + ⌫⌦

ν 



Cross	validation	(CV)	
!  Given	a	limited	amount	of	data	to	perform	a	supervised	
learning	training	of	an	MVA,	how	can	we	obtain	an	MVA	
solution	that	is	suf=iciently	general	when	applied	to	new	
data,	but	at	the	same	time	makes	optimal	use	of	limited	
statistics.	

!  Discuss:	
!  Hold	out	CV	
!  k-fold	CV	
!  leave	one	out	CV	(leave	p-out	CV	is	a	trivial	extension)	
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Hold	out	method	
!  Divide	the	data	into	two	samples.	
!  Use	one	sample	to	train	and	one	sample	to	validate.	

!  Logic	is	that	an	MVA	performing	similarly	for	the	training	
and	validation	sets	will	be	robust.		However	it	is	possible	
that	one	obtains	an	MVA	that	is	=ine	tuned	to	the	noise	
found	in	the	validation	sample.	
!  One	can	check	for	this	using	a	third	"test"	sample	of	data.	

!  Also	known	as	simple	validation	method.	
!  This	is	the	most	commonly	used	type	of	validation	for	MVAs	
performed	in	particle	physics.		One	a	few	analyses	use	a	more	
sophisticated	validation	method*.	

Devroye and Wagner (1979). Distribution-Free performance Bounds for Potential 
Function Rules. IEEE Transaction in Information Theory, 25 (5) 601–604. 

* at the time of writing, 2015, based on the past 15 years 
of common practice in this sub-field of physics. 
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k-fold	CV	
!  The	hold	out	method	does	not	use	the	validation	data	to	
determine	the	parameters	of	the	MVA	of	interest.		
!  These	are	use	to	compute	the	error	as	a	function	of	training	evolution	
to	check	against	that	of	the	training	set.	

!  For	situation	where	known	samples	of	events	are	scarce,	
this	can	be	viewed	as	a	wasteful	approach.	

!  The	concept	of	CV	was	developed	to	overcome	this	issue	(an	
provide	a	more	generalised	solution	for	the	MVA).	

!  CV	involves	averaging	the	several	hold	out	estimators.	

!  k-fold	CV	is	just	one	type	of	CV	method.	

Geisser, S. (1975). The predictive sample reuse method with 
applications. J. Amer. Statist. Assoc., 70:320–328. 
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k-fold	CV	
1)  Reserve	a	test	sample	from	the	data																														(if	one	wants	to	

validate	generalisation	beyond	the	k-fold	cross	validation	step).	
2)  Randomly	split	the	remaining	data	into	k	sub	samples:	
																																																						.	
3)  Cycle	through	training	k	times,	each	time	leaving	one	sub-sample	out.	

⌦ ! ⌦0 ⇢ ⌦

⌦0 ! ⌦i, i = 1, 2, . . . k

e.g. 5-fold cross validation: train 5 times 
dropping out one sub-sample at a time. 

Use average MVA parameter configuration 
obtained from the k-folds.  

The optimal value of k needs to be 
determined. 

limiting case:  
k=N(data): gives the leave-one-out cross 

validation method. 

validation 

validation 

validation 

validation 

validation 
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Leave	one	out	CV	
!  In	the	extreme	limit	of	k-fold	CV	that																															we	obtain	
the	leave	one	out	CV	method.	

!  Requires	N(data)	trainings	of	an	MVA.	
!  Average	the	result	obtained	from	the	N(data)	MVAs	to	determine	
the	output.	

!  Can	provide	useful	results	for	small	samples	of	data	where	
training	and	validation	examples	are	scarce.	

!  However,	can	be	computationally	expensive	for	large	data	
samples.	

!  See:		

!  This	can	be	extended	to	the	leave	p-out	CV	method,	where	one	
successively	omits	p	examples	from	a	training	and	cycles	through	
the	possible	permutations.	

k ! N(data)

Shao, J. (1993). Linear model selection by cross-
validation. J. Amer. Statist. Assoc., 88 (422):486–494. 

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. Roy. Statist. Soc. Ser. B, 36:111–147. With discussion and a reply 
by the authors;  Allen, D. M. (1974). The relationship between variable selection and data augmentation and a method for prediction. Technometrics, 
16:125–127;  Geisser, S. (1975). The predictive sample reuse method with applications. J. Amer. Statist. Assoc., 70:320–328. 
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What	value	of	k	should	you	use?	
!  Possible	values	of	k	range	from	2	to	N(data).	

!  It	is	not	obvious	what	value	of	k	will	produce	the	best	
training	of	a	given	MVA.	

!  Just	as	the	parameters	of	the	MVA	merit	optimisation	via	
training	or	=itting,	so	the	value	of	k	also	merits	optimisation.	

!  Note	for	example:	the	libsvm	SVM	implementation	in	R	uses	
a	10-fold	CV	by	default.	

!  A	study,	varying	k	can	be	found	in:	
Kohavi (1995), A study of cross-validation and bootstrap for accuracy estimation and model selection, Proc. 
14th Int. Joint Conf. Artif. Intell. Vol 2, Morgan Kaufmann. 
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How	can	we	avoid	being	=ine	tuned	to	the	
validation	set?	
!  If	there	is	still	a	concern	that	he	MVA	training/=itting	may	
be	susceptible	to	over	training	or	over	=itting	on	the	
validation	sample;	one	can	protect	against	this	by	reserving	
a	portion	of	data	as	an	independent	test	sample.	

!  The	training	cycle	becomes:	
1.  Divide	the	data	into	training	validation	and	test	samples.	
2.  Use	the	training	and	validation	samples	to	develop	the	MVA	and	

categorise	the	"best"	one.	
3.  Use	the	test	sample	performance	to	check	for	=ine	tuning	of	the	

MVA	as	a	=inal	step.	
!  If	the	chosen	MVA	is	over	trained	/	over	=itted,	then	go	back	to	

the	start.	
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1)  Train                                    2) Validate                                         3) Test 

MVA 1 
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MVA 3 

MVA n 
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k-fold cross 
validation 

MVA algorithms with different generic 
architectures, and weight parameters 
to be determined. 

Optimised 
parameters 

Each optimised MVA has a 
corresponding validation error 
E.  This FOM can be used to 
determine the "optimal" MVA 
to use with the test sample. 

The "optimal" MVA applied to 
the tertiary test sample 
should provide a similar 
performance to that of the 
training and validation sample 
if the MVA is to be considered 
general. 

If not; start the process again. 

Optimised 
parameters 

Optimised 
parameters 

General "optimal" 
solution? 

Select MVA with best 
validation E. 

This does not ensure 
generalisation. 

E  
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Committee	
!  It	is	a	waste	of	effort	to	train	n	different	MVAs	and	just	
select	one	of	them	to	use	to	distinguish	between	signal	and	
background.	

!  Instead	one	can	average	the	results	

!  Can	in	general	provide	a	better	separation	between	signal	
and	background	than	an	individual	MVA.	

!  Neglects	the	fact	that	different	MVAs	will	have	different	
error	rates;	but	one	can	weight	contributions	accordingly.	

Perrone and Cooper (1993), When networks 
disagree: ensemble methods for hybrid neural 
networks.  Artificial NN for speech and vision pp 
126-142, Chapman and Hall; Perrone (1994) 
General averaging results from convex optimisation 
in Mozer et al (eds) Procs 1993 Connectionist 
Models Summer School 364-371. 

yCOM (x) =
1

n

nX

i=1

yi(x)
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k-fold cross 
validation 

MVA algorithms with different generic 
architectures, and weight parameters 
to be determined. 

Optimised 
parameters 

Each optimised MVA has a 
corresponding validation error 
E.  This FOM can be used to 
determine the "optimal" MVA 
to use with the test sample. 

The "optimal" MVA applied to 
the tertiary test sample 
should provide a similar 
performance to that of the 
training and validation sample 
if the MVA is to be considered 
general. 

If not; start the process again. 

Optimised 
parameters 

Optimised 
parameters 

General "optimal" 
solution? 

Form a committee 
from the n MVAs 
studied. 

E  

yCOM (x) =
1
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Summary	
!  Regularisation	and	cross	validation	provide	methods	that	can	be	
applied	to	MVA	training	in	order	to	reduce	the	issue	of	over	
training	or	over	=itting.	

!  These	lead	to	further	complication	in	the	process	of	setting	up	
and	de=ining	the	MVA	of	interest,	but	also	lead	to	new	ideas	on	
how	to	select	or	combine	information	from	MVAs	such	as	the	
committee	concept.	

!  The	issue	of	generalisation	is	something	that	is	largely	neglected	
in	some	=ields	where	MVA	methods	are	applied	to	data	and	are	
far	removed	from	machine	learning;		
!  that's	not	necessarily	a	bad	thing	as	long	as	at	least	some	elementary	
procedure	such	as	the	hold	out	method	is	employed	in	an	attempt	to	
avoid	over	training.	

!  Using	cross	validation	or	regularisation	should	lead	to	a	more	robust	
result,	and	in	turn	may	yield	better	performance	over	the	simple	holdout	
method.	
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Suggested	further	reading	
!  The	references	indicated	throughout	these	slides.	

!  Bishop,	Neural	Networks	for	Pattern	Recognition	(1995)	OUP,	Chapter	9.	

!  Porter	and	Narsky,	Statistical	Analysis	Techniques	in	Particle	Physics	
(2013)	Wiley	(various	sections	–	see	index).	

!  CV:	
!  See	the	recent	review	by	S.	Arlot	and	A.	Celisse	on	"Cross-validation	
procedures	for	model	selection"	in	Statistics	Surveys	Vol.	4	(2010)	40–
79,	and	references	therein	for	a	detailed	discussion	on	CV.	
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