
Chapter 4

Visualising and Quantifying the
Properties of Data

4.1 Histograms

It is often very convenient to describe data in a succinct way, either through a visual representation or
through a brief quantitative description. Given a sample of data, for example the results of an ensemble of
coin flip experiments like those described in Section 3 it can be more instructive to view the results tabulated
in a histogram (See figure 4.1) of the data. A histogram is a graphical representation where data are placed
in discrete bins. Normally the content of each bin is shown on the vertical axis, and the value of the bin
can be read off of the horizontal axis. In this particular coin-flipping experiment there were 27H (heads-up)
and 23T (tails-up) obtained. The benefit of drawing a histogram over providing the corresponding data in a
table is that one can quickly obtain an impression of the shape of the data as a function of the different bins
as well as the relative bin content. For the coin flipping experiment this is not a significant benefit, however
the benefits of using histograms becomes more apparent when considering more complex problems.

4.2 Mode, Median, Mean

Continuous data variables are discretized when represented by a histogram, in doing this one does loose
information, so there has to be a trade off between the width of bins and the number of entries in a given
bin. Indeed the width of all of the bins need not be constant when trying to find a balance between bin
content and bin width.

If we take n repeated measurements of some observable x, it is useful to try and quantify our knowledge of the
ensemble in terms of a single number to represent the value measured, and a second number to represent the
spread of measurements. So our knowledge of the observable x will in general require some central value of
the observable, some measure of the spread of the observable, and the units that the observable is measured
in. The spread of measurements is discussed in Section 4.3 below, here we discuss the representative value
measured from an ensemble of data.

The mode of an ensemble of measurements is the most frequent value obtained. If the measurement in
question is of a continuous variable, one has to bin the data in terms of a histogram in order to quantify the
modal value of that distribution.

The median value of the ensemble is the value of x where there are an equal number of measurements above
and below that point. If there is an odd number of measurements, then this is straight forward and there are
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Figure 4.1: The outcome of an ensemble of coin flipping experiments resulting in either Heads or Tails.

(n− 1)/2 points above and below the median value. If there is an even number of measurements, then the
median value is taken as the midpoint between the two most central values. The median value can be useful
when it is necessary to rank data (for example in computing upper limits or some correlation coefficients,
described later in the course).

A better way to quantify the value measured is to take an arithmetic average of the individual measurements.
The arithmetic mean value (usually this is just called the mean for short) of a set of data, is the average
value of x computed from the ensemble. The mean value is denoted either by x or �x� and is given by

x = �x� =
1
n

n�

i=1

xi (4.2.1)

where xi is the ith measurement of x. The mean value of a function f(x) can be calculated in the same way
using

f =
1
n

n�

i=1

f(xi). (4.2.2)

If the function in question is a continuous one, then the average value of the function between x = a and
x = b is simply

f =
1

b− a

b�

x=a

f(x)dx.

It is possible to compute the average of a set of binned data, however if rounding occurs in the binning
process, then some information is lost and the resulting average will be less precise than obtained using the
above formulae.
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Exercise: Modify the above formulae (Eq. 4.2.1 and 4.2.2) so that they can be used to compute the
arithmetic average of an ensemble of binned data.

Figure 4.2 shows the representation of a sample of data as plotted in a histogram. This figure has two arrows
to indicate the mean and mode values. For this particular sample of data the mean is 5.1, and the mode is
6.5. The fact that the mode is greater than the mean is an indication that the data are asymmetric about
the mean. We usually refer to such a distribution as being skewed, and in this case the data are skewed to
the right. The skewness of a distribution is discussed further in Section 4.4.
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Figure 4.2: A sample of data represented by a histogram, with the mean (solid arrow) and mode (dashed
arrow) indicated.

4.3 Quantifying the spread of data

4.3.1 Variance

The mean of an ensemble of data given by x doesn’t provide any information on how the data are distributed.
So any description of a set of data just quoting a value for x is incomplete. We need a second number in
order to quantify the spread or dispersion of data about the mean value. The average value of the deviations
from the mean value is not a useful quantity as by definition this will be zero for a symmetrically distributed
sample of data. We can consider the average value of the deviations from the mean squared as a measure of
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the spread of our ensemble of measurements. This is called the variance V (x)

V (x) =
1
n

n�

i=1

(xi − x)2,

=
1
n

n�

i=1

x2
i − 2xix + x2,

=
1
n

n�

i=1

x2
i −

1
n

n�

i=1

2xix +
1
n

n�

i=1

x2,

= x2 − 2x2 + x2,

= x2 − x2. (4.3.1)

So the variance is given by

V (x) = x2 − x2.

The quantity (xi − x) is sometimes referred to as the residual1 of x.

4.3.2 Standard Deviation

The root of the mean-squared (root-mean-squared) deviation is called the standard deviation, and this is
given by:

σ(x) =
�

V (x),

=
�

x2 − x2. (4.3.2)

The standard deviation quantifies the amount by which it is reasonable for a measurement of x to differ
from the mean value x. In general we would expect to have 31.7% of measurements to deviate from the
mean value by more than 1σ, 4.5% of measurements to deviate by more than 2σ, and 0.3% of measurements
to deviate by more than 3σ. If we performed a set of measurements where our results were more broadly
distributed than this, we would worry about what might have gone wrong with the experiment.

The definition of standard deviation given in Eq. 4.3.2 is known to be biased. The level of bias is given by
a factor of (n− 1)/n, so one often multiplies Eq. 4.3.2 by the Bessel Correction factor of n/(n− 1) in order
to remove this bias. The corresponding form for the standard deviation is

σ(x) =

���� 1
n− 1

n�

i=1

(xi − x)2. (4.3.3)

It can be seen that both forms are identical for n → ∞, and it is better to use the second form for small
samples of data. Physicists prefer using the standard deviation rather than variance when describing data
as the former has the same units as the observable being measured.

1The residual of an observable is the degree to which a constraint equation or other system is satisfied by measurement
errors or approximate parameters. In this case it the residual is the difference between the ith measurement of an observable
and the arithmetic mean determined from an ensemble of measurements of that observable.
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4.3.3 Full Width at Half Maximum: FWHM

Often instead of quantifying a distribution using the variance or standard deviation, scientists will quote the
Full Width at Half Maximum (FWHM). This has the advantage that any extreme outliers of the distribution
do not contribute to the quantification of the spread of data. As the name suggests, the FWHM is the width
of the distribution (the spread above and below the mean) read off of a histogram of data at the points where
the distribution falls to half of the maximum. The FWHM can be compared to the standard deviation of a
Gaussian distribution by noting that

FWHM = 2.35σ.

however some thought should be put into deciding if such a comparison is meaningful or sensible for a given
set of data.

4.4 Skew

In the previous discussion, we have formalized a way to quantify a distribution of data resulting from
an ensemble of measurements with only two numbers. One number giving a single value describing the
outcome of our measurement the arithmetic mean, and one number describing the spread of measurements
the standard deviation. In the definition of standard deviation, we have implicitly assumed that the data
are similar above and below the mean. This can be seen in Eq. 4.3.1 as we compute the sum of squared
deviations from the mean. Our quantification of the data doesn’t tell us about any possible asymmetry
about the mean value. We can try and quantify such asymmetries using the skew or skewness of the data.
Skew is a quantity derived from the third power of x and is given by

γ =
1

nσ3

n�

i=1

(xi − x)3,

=
1
σ3

(x− x)3,

=
1
σ3

�
x3 − 3xx2 + 2x3

�
, (4.4.1)

where the steps in going from the second to last line have been omitted.

Exercise: Derive the form given for γ starting from 1
nσ3

n�
i=1

(xi − x)3.

As with the standard deviation, there are alternate forms for the skew of a distribution. A simple form is
given by Pearson’s Skew which is

Skew =
mean−mode

σ
,

which is zero by definition when the distribution of data is symmetric and the mean and mode coincide.

Skew can occasionally be useful. Quantities derived from higher order moments exist, but they are not
commonly used in physical sciences.
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4.5 Measurements of more than one observable

4.5.1 Covariance

The previous discussion only considered measuring some observable quantity x, and how we can simply
quantify an ensemble of n such measurements. Often we are faced with the more complicated problem of
making measurements that depend on more than one observable. We can construct a variance between two
observables x and y, commonly called the covariance cov(x, y) = Vx,y which is given by

cov(x, y) =
1
n

n�

i=1

(xi − x)(yi − y),

= xy − x y. (4.5.1)

If the values of x and y are independent, then the covariance will be zero. If however large values of x tend
to occur with large values of y, and similarly small values of x with small values of y then the covariance will
be non-zero. We can extend our notation to an arbitrary number of dimensions, where we can denote the ith

data point as xi, and xi = (x(1), x(2), . . . x(M)). Here the subscript i refers to the data set, and the subscripts
with parentheses refer to the particular dimension of the data point. For example in a two-dimensional
problem x(1) = x and x(2) = y. Using this notation we can write an M ×M covariance matrix (also called
the error matrix) for an M dimensional problem with elements given by

cov(x(i), x(j)) =
1
n

n�

i=1

(x(i) − x(i))(x(j) − x(i)),

= x(i)x(j) − x(i) x(j),

= Vi,j ,

where i and j take values from one to M . The diagonals of this matrix, where i = j are simply the variance
of the ith observable.

4.5.2 Correlation

The covariance is a dimensional quantity. It is useful to work with a quantity that is a dimensionless measure
of the dependence of one variable on another. The Pearson’s correlation coefficient ρxy is one such variable
where the covariance is normalised by the product if standard deviations of x and y:

ρxy =
cov(x, y)

σxσy
.

=
1

nσxσy

n�

i=1

(xi − x)(yi − y). (4.5.2)

Again this can be generalized to an M × M matrix called the correlation matrix. The elements of the
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correlation matrix are given by

ρij =
cov(x(i), x(j))

σ(i)σ(j)
.

=
Vi,j

σ(i)σ(j)
.

It can be seen from Eq. 4.5.2 that ρxy is zero if x and y are independent (following on from the previous
discussion with respect to covariance). If x is completely dependent on y, then the possible values of ρxy

are ±1. In the case that x increases with increasing y ρxy = +1, and for the case where x decreases for
increasing y ρxy = −1.

As with the other variables mentioned, there is more than one type of correlation. If the type is not specified
then it is assumed that this corresponds to the Pearson correlation coefficient discussed here.

4.5.3 Removing correlations between variables

If we find that two variables are correlated, we can try and remove the correlation by performing a simple
translation (equivalent to a rotation about the origin by some angle θ in a two-dimensional space). The
solution to this problem can be readily seen by considering the covariance matrix between n variables x. We
wish to map the x space onto some un-correlated parameters x� in such a way that the covariance matrix V �

is diagonal. Another way to express this is that we have to diagonalize the covariance matrix V and apply
the corresponding rotation onto all events in the data set Ω(x) to produce the data set of rotated elements
Ω�(x�).

Matrix diagonalisation is a well known problem in linear algebra that one uses a number of methods of
increasing rigor to perform. Given a non-singular matrix V , one can write down the eigen-value equation:

(V − λI).r = 0, (4.5.3)

where λ is an eigenvalue, I is the identity matrix, and r is a vector of coordinates. The eigenvalues can be
determined by solving det(V − λI) = 0, and given these it is possible to compute the corresponding eigen-
vectors. If this method fails to work, there are other methods including single-value-decomposition (SVD)
that may suffice. The derivation of the transformation matrix for n = 2 is given in Cowan’s ’Statistical Data
Analysis’.
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Figure 4.3: From top to bottom, different samples of data with Pearson correlation coefficients of ρx,y = −1, 0
and +1.


