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Overview 

AFit Utility overview. 

Checking correlations between variables. 

Interface to TMVA. 

Running ensembles of toy Monte Carlo experiments. 

Plotting: 

Summary 
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Utilities 

When setting up your analysis you will think about 

Checking for correlations between fit variables: 

AFitStatTools 

Defining an MVA: AFitTMVAInterface 

Running toys: AFitToy 

Plotting: AFitProjectionPlot 

Projections, (not)cutting on data, on likelihood ratio: S/(S+B) 

Likelihood ratio plot to test global agreement between fit and 

MC: AFitLRPlot 

Projection cutting an a likelihood ratio. 

Total PDF 

Signal 

Example output from AFitLRPlot 
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Checking Correlations 

The problem: 

A likelihood fit usually assumes that discriminating 

variables are uncorrelated. 

Thus: 

This is often an approximation. 

Several ways to deal with this: 

i) Transform the basis vector to remove correlations:  

ii) Check to see if the correlations matter: 

A) Compute correlation matrix of the discriminating variables 

        [If ‘small’ then can probably neglect correlations]. 

B) Run ensembles of embedded toy Monte Carlo, using fully 

simulated data where possible to determine systematic 
uncertainties. 
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Checking Correlations 

The AFitStatTools class provides a simple interface for you to 

compute correlations between pairs of variables in a tree. 

The output of this command for a set of 500 randomly generated 
x,y,z values will look something like the following: 

 AFitStatTools st; 

st.correlation(myTree, "x,y,z", kFALSE); 

A tree containing the 

variables you want to 

compare. 

A comma separated 

list of variables. 

kFLASE: this is the default 

value and means that Pearson 

correlation coefficients are 

computed. 

 Results from AFitStatTools::pearsons_correlation for the variables  

        x,y,z 

 Pearsons Correlation matrix follows:  
      1         -0.0862659      -0.0524787  

-0.0862659            1         0.0436937  

-0.0524787      0.0436937             1  

x 

y 

z 
x                y               z 

Each entry in this matrix is computed using: 

                                       where i is the RMS 

                                       of the i distribution, 
                                       and i,j is the  

                                       covariance. 

,

,

i j

i j

i j

=



August 2009 Adrian Bevan 6 

TMVA Interface 

TMVA is a toolkit for multivariate analysis described in detail on the 

TMVA homepage: 

http://tmva.sourceforge.net/ 

The AFitTMVAInterface class is a wrapper to TMVA. 

See the TMVA user guide to learn how to use this package, as only 

the AFitTMVAInterface will be described here. 

The Problem: 

 How does one distinguish between two samples A and B when they 

overlap in a non-trivial way? 

Sample A Sample B 



TMVA Interface 

Given two samples of data: A and B (e.g. signal and

 background) there are many ways to classify them. 

Each classifier can be used to assign a probability of the Aness

 or Bness of an event. 

Classifiers implemented: 
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Cuts 

Likelihood 
HMatrix 

Fisher 
MLP 

CFMlpANN 

TMlpANN 
BDT 

RuleFit 
SVM 

BayesClassifier 

Committee 
MaxMethod 

Step 1: Write a configuration file specifying: 

 Signal data 

 Background data 

 Output file 

 Classifiers to use (trainingMethod) 

 Variables to use 

 TMVAFactory options 

 Training options 

Step 2: trainMethods to run through all classifier  

training steps, and output results. 

Step 3: runReader to add the classifier values to a 

RooDataSet. 



TMVA Interface 

Example configuration file: 

Once the configuration file is ready, it is simple to run TMVA: 

... and straightforward to add all classifiers to a data set: 
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[TMVAInterface] 

sigFile = tmva_fsig.root 

bgFile  = tmva_fbg.root 

dataName = data 

outputFileName = tmva_out.root 

trainingMethod = Fisher,CFMlpANN,TMlpANN,BDT,RuleFit,SVM,MLP 

variables = a:F,b:F,c:F 

factoryOptions = V,Color 

trainingOptions = NSigTrain=500:NBkgTrain=500:NSigTest=500:NbkgTest=500:SplitMode=Random 

Specifying the input and output files 

Comma separated list of classifiers 

Variables to use 

  AFitTMVAInterface a("myTMVAConfigFile.txt"); 

  a.trainMethods(); 

a.runReader("tmva_fsig.root", "tmva_outdata.root"); 
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Toy MC 

The problems: 

Likelihood functions are intrinsically biased. 

Need to run ensembles of PDF toy Monte Carlo experiments.  

Need to verify that the likelihood you define as an acceptable, or 
negligible bias with regard to extracting your observables. 

Look at pull distributions: 

Rule of thumb (valid for large statistics): 

Pull mean ~0 (if fit is unbiased) 

Pull width ~1 (if errors are estimated correctly) 

Correlations between discriminating variables: 

Need to run ensembles of embedded toy Monte Carlo experiments. 

( )
( )

( )
obs inputx x

Pull x
x

=



August 2009 Adrian Bevan 10 

Toy MC 

The problems: 

Likelihood functions are intrinsically biased. 

Need to run ensembles of PDF toy Monte Carlo experiments.  

Need to verify that the likelihood you define as an acceptable, or 
negligible bias with regard to extracting your observables. 

Look at pull distributions: 

Rule of thumb (valid for large statistics): 

Pull mean ~0 (if fit is unbiased) 

Pull width ~1 (if errors are estimated correctly) 

Correlations between discriminating variables: 

Need to run ensembles of embedded toy Monte Carlo experiments. 

( )
( )

( )
obs inputx x

Pull x
x

=

Error on x extracted from fit. 

Parameter value used in 

generation (from datacard) Fitted value of the 

parameter. 
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Toy MC [PDF Toys] 

Using the μ example (see the user guide, web, and examples) 

AFitMaster master("MuonLifetime.txt"); 

RooAbsPdf * pdf = master.getPdf(); 

RooArgSet * compSet = pdf->getComponents(); 

RooArgSet * parSet  = pdf->getParameters(compSet); 

parSet.Print("v"); 

RooRealVar * t = (RooRealVar*)parSet->find("t"); 

AFitToy toy; 

toy.setOutputDir("toy/"); 

for(int i=0; i < 10; i++){ 
    toy.setSeed(i); 

    // reset parameters to intial values 

    RooDataSet * data = toy.generateToySample(pdf, RooArgSet(*t), 1000, 0); 

     // do something … fit the data or save the file to disk 

} 

t (μs) 

 Fit the time distribution with an  

  exponential signal + constant  

  background model. 

 Extract signal and background yields,  

  as well as μ. 

Is the extracted 

μ unbiased? 
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Toy MC [PDF Toys] 

Using the μ example (see the user guide, web, and examples) 

AFitMaster master("MuonLifetime.txt"); 

RooAbsPdf * pdf = master.getPdf(); 

RooArgSet * compSet = pdf->getComponents(); 

RooArgSet * parSet  = pdf->getParameters(compSet); 

parSet.Print("v"); 

RooRealVar * t = (RooRealVar*)parSet->find("t"); 

AFitToy toy; 

toy.setOutputDir("toy/"); 

for(int i=0; i < 10; i++){ 
    toy.setSeed(i); 

    // reset parameters to intial values 

    RooDataSet * data = toy.generateToySample(pdf, RooArgSet(*t), 1000, 0); 

     // do something … fit the data or save the file to disk 

} 

Build the fit model in the normal way. 

Determine the discriminating variables 

to generate (just “t” in this case). 

Configure an AFitToy object 

Generate (and 

fit) toy data from 

your fit model. 
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Toy MC [PDF Toys] 

Is the fit behaving sensibly? 

Q) Are we able to fit back the value of μ we put into the toy? 

Q) Is the error we get back from MINUIT sensible? 

Remember that we expect a Gaussian distribution with 

mean and width of the pull distribution equal to 1 and 0, 

respectively. Note for complicated fits, it is more 

practical to generate and fit 

samples of events one by one, 
rather than in a for loop. 

It is important to reset parameters 

to initial values when generating 

and fitting back in the same loop 
(like this example). 

 A safe way to do this is to remake  

  the PDF from an AFitMaster within  

  the for loop. 

Pull 
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Toy MC [PDF Toys] 
So what’s happening? 

Define the model 

Generate a data sample  

(yields are varied by  
Poisson statistics) 

Fit the data 

Record the results 

Reset parameters 

Check Results after  

N iterations: 

* It is imperative that 

each toy is generated 

from the same set of 
initial conditions! 

Biased? 

YES=go back 

to beginning. 

NO = done! 
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Toy MC [Embedded] 

When we neglect correlations between pairs of 

discriminating variables, we assume that this is a 

sensible thing to do. 

We can check this using toy Monte Carlo techniques, by 

replacing the components generated from the likelihood model 

with GEANT Monte Carlo simulated events from your 

experiment. 

A suitably detailed GEANT Monte Carlo simulation will 

reconstruct correlations expected in the data for a given 

component. 

Want to use control samples of GEANT Monte Carlo, often with 

events simulated from sub-components of the likelihood model 

to run ensembles of toy experiments. 

We call these 'Embedded Toy Monte Carlo Experiments' to 

distinguish them from PDF toys. 



Toy MC [Embedded] 

Several ways to approach the problem using member functions of

 AFitToy: 

1) Generate a single sample of events from an existing data set: 

2) Generate a set of samples from an existing data set: 

        These 11 toy files will be written to a directory (default = ./) which 

        can be specified by the user. 
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AFitToy toy; 

toy.setPoisson(kFALSE); 

RooDataSet * theone = toy.generatePrototype(data, 1000); 

toy.generateEmbeddedToys(data, 1000, 0, 10); 

N.B. For embedded toys we want to test bias from our 
assumptions, and don't care about making pull plots, so we 

don't have to generate events with a Poisson variation.  

#events,    first toy,     last toy 



Toy MC [File Management] 

Simple embedded Toy MC will have a signal sample (GEANT

 MC), and a background sample (PDF toy).  These need to be

 combined before they can be fitted. 

Once the files are merged together, you need to write a macro 

     or programme to fit them.  The results can be stored in a 

     TTree using: 

 where the results file 'file' will be written from the floating 

 parameters (value and parabolic error) extracted from th 

 RooFitResult, global correlation coefficients and the fit status. 

The TTrees can be merged for further processing using: 
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TString filestomerge = "comma,separated,list";  

TObjArray * fArr = filestomerge.Tokenize(','); 

toy.mergeFiles(fArr, "myMergedFile.root"); 

void AFitToy::dumpFitResult(TString file, RooFitResult * result) 

void AFitToy::chainResults(TChain & chain, Int_t imin, Int_t imax,  

     Bool_t kCutOnStatus) 
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Plotting 1: Projecting over all data 

Project PDF by integrating over all other variables to 

produce the marginal distribution for xi: 

For example consider an mES E fit: 

•x' contains all variables in x, except xi. 

•The integral is over all space relevant for  

the fit. 

P(x) =                                       



Plotting 1: Projecting over all data 

The AFitProjectionPlot class can be used as an interface to

 RooFit's plotOn function. 

Simple to use: need a discriminating variable, PDF, dataset: 

If data is null, only plots pdf, similarly only plots data if pdf is null. 

Can make plots using prototype data samples. 

Can also plot a second PDF (e.g. background) on the frame at the same

 time. 

Also able to make a frame of the  

     pulls of a PDF: i.e. (PDF-data)/  

 given a RooHist from an existing  

     frame. 
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AFitProjectionPlot plotter; 

RooPlot * frame_bMes = plotter.makePlot(*bMes, data, pdf); 

RooHist * makePullPlot(RooHist*  

          dhist, RooCurve* curve); 

mES (GeV/c2) 

P
u
ll 
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Plotting 2: Projecting a slice 

For many fits all space includes background sideband regions that 

are not interesting from the perspective of understanding signal. 

Would like to make projections of the 'interesting space' instead of all 

space. 

To do this you just need to add a string describing the cut you want to 

make on the data: 

mES (GeV/c2) 

E
 (

G
e
V

) 

b 

a 

RooPlot * framecut_bMes = plotter.makePlot("abs(bDeltaE)<0.1", *bMes, data, pdf); 

Background 

Signal region 
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Plotting 3: likelihood ratio cut 

You can also use an interface to RooFit's plotting 

functions to simplify the process of making a plot while 

cutting on a likelihood ratio. 

Step 1: Set up your PDF to correspond to the result obtained by 

fitting the data (either from an appropriate data card or by fitting 

the data itself). 

Step 2: Compute a likelihood ratio R: 

and make a plot of the distribution of R: 

Step 3: Determine where to cut on R, and make the projection 

plot you're interested in. 

This ratio is computed excluding 

the variable you wish to project. 



Plotting 3: likelihood ratio cut 

The original projection shows that there is a

 signal. 

But there is a lot of side-band background

 included in this projection. 

Step 2: Make a plot of R: 

Step 2: Make the projection cutting on R: 
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AFitProjectionPlot plotter; 

RooPlot * llrframe = plotter.makeLRProjectionFrame( 

      pdf,data,varToProject,sigCompName); 

llrframe->Draw(); 

RooPlot * projframe = plotter.makeLRProjection(pdf, data,  

   varToProject, sigCompName, 1.3); 

projframe->Draw(); 

When making a projection ask how you plan to cut on R.  Do you find an optimal place to 
cut, or choose one or more values to demonstrate that the PDF describes the total signal 

and background, while enhancing the relative signal content of the projection? 

Projection of all data 

R distribution 

Projection of the data  
for R > 1.3 
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Plotting 4: Likelihood Ratio Plots 

A limitation of making a projection while cutting on a likelihood ratio 

is you don't see how good the agreement is between all events in 

the data, and your PDF model. 

Compute the likelihood ratio R integrating over all space, and plot this instead. 

argSet is a RooArgSet of the  

     variables x. 

nSig and nBG are signal and  

     background yields. 

Any significant discrepancy between data and MC would indicate a 
problem with the model assumed. 

AFitLRPlot lrplot; 

lrplot.makePlot(signalPDF, bgPDF, argSet, data, nSig, nBG); 

Data 

Signal (MC generated from PDF) 

Background (MC generated from PDF) 
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Summary 

AFit has a number of utilities to facilitate defining a likelihood fit and 

validating it. 

Statistical tools for testing correlations between input variables 

(and other calculations). 

Interface to TMVA in order to define your favourite multivariate 
analyser, and append this variable toy your data and Monte 

Carlo Files. 

An interface class to facilitate running pure and embedded toy 

Monte Carlo experiments. 

Plotting interfaces to RooFit. 


