
AFit
Utilities

http://pprc.qmul.ac.uk/~bevan/afit/

Adrian Bevan

August 2009 Adrian Bevan 2

Overview

AFit Utility overview.

Checking correlations between variables.

Interface to TMVA.

Running ensembles of toy Monte Carlo experiments.

Plotting:

Summary

August 2009 Adrian Bevan 3

Utilities

When setting up your analysis you will think about

Checking for correlations between fit variables:

AFitStatTools

Defining an MVA: AFitTMVAInterface

Running toys: AFitToy

Plotting: AFitProjectionPlot

Projections, (not)cutting on data, on likelihood ratio: S/(S+B)

Likelihood ratio plot to test global agreement between fit and

MC: AFitLRPlot

Projection cutting an a likelihood ratio.

Total PDF

Signal

Example output from AFitLRPlot

August 2009 Adrian Bevan 4

Checking Correlations

The problem:

A likelihood fit usually assumes that discriminating

variables are uncorrelated.

Thus:

This is often an approximation.

Several ways to deal with this:

i) Transform the basis vector to remove correlations:

ii) Check to see if the correlations matter:

A) Compute correlation matrix of the discriminating variables

 [If ‘small’ then can probably neglect correlations].

B) Run ensembles of embedded toy Monte Carlo, using fully

simulated data where possible to determine systematic
uncertainties.

() ()
i

i

x x=P P

August 2009 Adrian Bevan 5

Checking Correlations

The AFitStatTools class provides a simple interface for you to

compute correlations between pairs of variables in a tree.

The output of this command for a set of 500 randomly generated
x,y,z values will look something like the following:

 AFitStatTools st;

st.correlation(myTree, "x,y,z", kFALSE);

A tree containing the

variables you want to

compare.

A comma separated

list of variables.

kFLASE: this is the default

value and means that Pearson

correlation coefficients are

computed.

 Results from AFitStatTools::pearsons_correlation for the variables

 x,y,z

 Pearsons Correlation matrix follows:
 1 -0.0862659 -0.0524787

-0.0862659 1 0.0436937

-0.0524787 0.0436937 1

x

y

z
x y z

Each entry in this matrix is computed using:

 where i is the RMS

 of the i distribution,
 and i,j is the

 covariance.

,

,

i j

i j

i j

=

August 2009 Adrian Bevan 6

TMVA Interface

TMVA is a toolkit for multivariate analysis described in detail on the

TMVA homepage:

http://tmva.sourceforge.net/

The AFitTMVAInterface class is a wrapper to TMVA.

See the TMVA user guide to learn how to use this package, as only

the AFitTMVAInterface will be described here.

The Problem:

 How does one distinguish between two samples A and B when they

overlap in a non-trivial way?

Sample A Sample B

TMVA Interface

Given two samples of data: A and B (e.g. signal and

 background) there are many ways to classify them.

Each classifier can be used to assign a probability of the Aness

 or Bness of an event.

Classifiers implemented:

August 2009 Adrian Bevan 7

Cuts

Likelihood
HMatrix

Fisher
MLP

CFMlpANN

TMlpANN
BDT

RuleFit
SVM

BayesClassifier

Committee
MaxMethod

Step 1: Write a configuration file specifying:

 Signal data

 Background data

 Output file

 Classifiers to use (trainingMethod)

 Variables to use

 TMVAFactory options

 Training options

Step 2: trainMethods to run through all classifier

training steps, and output results.

Step 3: runReader to add the classifier values to a

RooDataSet.

TMVA Interface

Example configuration file:

Once the configuration file is ready, it is simple to run TMVA:

... and straightforward to add all classifiers to a data set:

August 2009 Adrian Bevan 8

[TMVAInterface]

sigFile = tmva_fsig.root

bgFile = tmva_fbg.root

dataName = data

outputFileName = tmva_out.root

trainingMethod = Fisher,CFMlpANN,TMlpANN,BDT,RuleFit,SVM,MLP

variables = a:F,b:F,c:F

factoryOptions = V,Color

trainingOptions = NSigTrain=500:NBkgTrain=500:NSigTest=500:NbkgTest=500:SplitMode=Random

Specifying the input and output files

Comma separated list of classifiers

Variables to use

 AFitTMVAInterface a("myTMVAConfigFile.txt");

 a.trainMethods();

a.runReader("tmva_fsig.root", "tmva_outdata.root");

August 2009 Adrian Bevan 9

Toy MC

The problems:

Likelihood functions are intrinsically biased.

Need to run ensembles of PDF toy Monte Carlo experiments.

Need to verify that the likelihood you define as an acceptable, or
negligible bias with regard to extracting your observables.

Look at pull distributions:

Rule of thumb (valid for large statistics):

Pull mean ~0 (if fit is unbiased)

Pull width ~1 (if errors are estimated correctly)

Correlations between discriminating variables:

Need to run ensembles of embedded toy Monte Carlo experiments.

()
()

()
obs inputx x

Pull x
x

=

August 2009 Adrian Bevan 10

Toy MC

The problems:

Likelihood functions are intrinsically biased.

Need to run ensembles of PDF toy Monte Carlo experiments.

Need to verify that the likelihood you define as an acceptable, or
negligible bias with regard to extracting your observables.

Look at pull distributions:

Rule of thumb (valid for large statistics):

Pull mean ~0 (if fit is unbiased)

Pull width ~1 (if errors are estimated correctly)

Correlations between discriminating variables:

Need to run ensembles of embedded toy Monte Carlo experiments.

()
()

()
obs inputx x

Pull x
x

=

Error on x extracted from fit.

Parameter value used in

generation (from datacard) Fitted value of the

parameter.

August 2009 Adrian Bevan 11

Toy MC [PDF Toys]

Using the μ example (see the user guide, web, and examples)

AFitMaster master("MuonLifetime.txt");

RooAbsPdf * pdf = master.getPdf();

RooArgSet * compSet = pdf->getComponents();

RooArgSet * parSet = pdf->getParameters(compSet);

parSet.Print("v");

RooRealVar * t = (RooRealVar*)parSet->find("t");

AFitToy toy;

toy.setOutputDir("toy/");

for(int i=0; i < 10; i++){
 toy.setSeed(i);

 // reset parameters to intial values

 RooDataSet * data = toy.generateToySample(pdf, RooArgSet(*t), 1000, 0);

 // do something … fit the data or save the file to disk

}

t (μs)

 Fit the time distribution with an

 exponential signal + constant

 background model.

 Extract signal and background yields,

 as well as μ.

Is the extracted

μ unbiased?

August 2009 Adrian Bevan 12

Toy MC [PDF Toys]

Using the μ example (see the user guide, web, and examples)

AFitMaster master("MuonLifetime.txt");

RooAbsPdf * pdf = master.getPdf();

RooArgSet * compSet = pdf->getComponents();

RooArgSet * parSet = pdf->getParameters(compSet);

parSet.Print("v");

RooRealVar * t = (RooRealVar*)parSet->find("t");

AFitToy toy;

toy.setOutputDir("toy/");

for(int i=0; i < 10; i++){
 toy.setSeed(i);

 // reset parameters to intial values

 RooDataSet * data = toy.generateToySample(pdf, RooArgSet(*t), 1000, 0);

 // do something … fit the data or save the file to disk

}

Build the fit model in the normal way.

Determine the discriminating variables

to generate (just “t” in this case).

Configure an AFitToy object

Generate (and

fit) toy data from

your fit model.

August 2009 Adrian Bevan 13

Toy MC [PDF Toys]

Is the fit behaving sensibly?

Q) Are we able to fit back the value of μ we put into the toy?

Q) Is the error we get back from MINUIT sensible?

Remember that we expect a Gaussian distribution with

mean and width of the pull distribution equal to 1 and 0,

respectively. Note for complicated fits, it is more

practical to generate and fit

samples of events one by one,
rather than in a for loop.

It is important to reset parameters

to initial values when generating

and fitting back in the same loop
(like this example).

 A safe way to do this is to remake

 the PDF from an AFitMaster within

 the for loop.

Pull

N
u
m

b
e
r

o
f

to
y
 e

x
p
e
ri
m

e
n
ts

August 2009 Adrian Bevan 14

Toy MC [PDF Toys]
So what’s happening?

Define the model

Generate a data sample

(yields are varied by
Poisson statistics)

Fit the data

Record the results

Reset parameters

Check Results after

N iterations:

* It is imperative that

each toy is generated

from the same set of
initial conditions!

Biased?

YES=go back

to beginning.

NO = done!

August 2009 Adrian Bevan 15

Toy MC [Embedded]

When we neglect correlations between pairs of

discriminating variables, we assume that this is a

sensible thing to do.

We can check this using toy Monte Carlo techniques, by

replacing the components generated from the likelihood model

with GEANT Monte Carlo simulated events from your

experiment.

A suitably detailed GEANT Monte Carlo simulation will

reconstruct correlations expected in the data for a given

component.

Want to use control samples of GEANT Monte Carlo, often with

events simulated from sub-components of the likelihood model

to run ensembles of toy experiments.

We call these 'Embedded Toy Monte Carlo Experiments' to

distinguish them from PDF toys.

Toy MC [Embedded]

Several ways to approach the problem using member functions of

 AFitToy:

1) Generate a single sample of events from an existing data set:

2) Generate a set of samples from an existing data set:

 These 11 toy files will be written to a directory (default = ./) which

 can be specified by the user.

August 2009 Adrian Bevan 16

AFitToy toy;

toy.setPoisson(kFALSE);

RooDataSet * theone = toy.generatePrototype(data, 1000);

toy.generateEmbeddedToys(data, 1000, 0, 10);

N.B. For embedded toys we want to test bias from our
assumptions, and don't care about making pull plots, so we

don't have to generate events with a Poisson variation.

#events, first toy, last toy

Toy MC [File Management]

Simple embedded Toy MC will have a signal sample (GEANT

 MC), and a background sample (PDF toy). These need to be

 combined before they can be fitted.

Once the files are merged together, you need to write a macro

 or programme to fit them. The results can be stored in a

 TTree using:

 where the results file 'file' will be written from the floating

 parameters (value and parabolic error) extracted from th

 RooFitResult, global correlation coefficients and the fit status.

The TTrees can be merged for further processing using:

August 2009 Adrian Bevan 17

TString filestomerge = "comma,separated,list";

TObjArray * fArr = filestomerge.Tokenize(',');

toy.mergeFiles(fArr, "myMergedFile.root");

void AFitToy::dumpFitResult(TString file, RooFitResult * result)

void AFitToy::chainResults(TChain & chain, Int_t imin, Int_t imax,

 Bool_t kCutOnStatus)

August 2009 Adrian Bevan 18

Plotting 1: Projecting over all data

Project PDF by integrating over all other variables to

produce the marginal distribution for xi:

For example consider an mES E fit:

•x' contains all variables in x, except xi.

•The integral is over all space relevant for

the fit.

P(x) =

Plotting 1: Projecting over all data

The AFitProjectionPlot class can be used as an interface to

 RooFit's plotOn function.

Simple to use: need a discriminating variable, PDF, dataset:

If data is null, only plots pdf, similarly only plots data if pdf is null.

Can make plots using prototype data samples.

Can also plot a second PDF (e.g. background) on the frame at the same

 time.

Also able to make a frame of the

 pulls of a PDF: i.e. (PDF-data)/

 given a RooHist from an existing

 frame.

August 2009 Adrian Bevan 19

AFitProjectionPlot plotter;

RooPlot * frame_bMes = plotter.makePlot(*bMes, data, pdf);

RooHist * makePullPlot(RooHist*

 dhist, RooCurve* curve);

mES (GeV/c2)

P
u
ll

August 2009 Adrian Bevan 20

Plotting 2: Projecting a slice

For many fits all space includes background sideband regions that

are not interesting from the perspective of understanding signal.

Would like to make projections of the 'interesting space' instead of all

space.

To do this you just need to add a string describing the cut you want to

make on the data:

mES (GeV/c2)

E
 (

G
e
V

)

b

a

RooPlot * framecut_bMes = plotter.makePlot("abs(bDeltaE)<0.1", *bMes, data, pdf);

Background

Signal region

August 2009 Adrian Bevan 21

Plotting 3: likelihood ratio cut

You can also use an interface to RooFit's plotting

functions to simplify the process of making a plot while

cutting on a likelihood ratio.

Step 1: Set up your PDF to correspond to the result obtained by

fitting the data (either from an appropriate data card or by fitting

the data itself).

Step 2: Compute a likelihood ratio R:

and make a plot of the distribution of R:

Step 3: Determine where to cut on R, and make the projection

plot you're interested in.

This ratio is computed excluding

the variable you wish to project.

Plotting 3: likelihood ratio cut

The original projection shows that there is a

 signal.

But there is a lot of side-band background

 included in this projection.

Step 2: Make a plot of R:

Step 2: Make the projection cutting on R:

August 2009 Adrian Bevan 22

AFitProjectionPlot plotter;

RooPlot * llrframe = plotter.makeLRProjectionFrame(

 pdf,data,varToProject,sigCompName);

llrframe->Draw();

RooPlot * projframe = plotter.makeLRProjection(pdf, data,

 varToProject, sigCompName, 1.3);

projframe->Draw();

When making a projection ask how you plan to cut on R. Do you find an optimal place to
cut, or choose one or more values to demonstrate that the PDF describes the total signal

and background, while enhancing the relative signal content of the projection?

Projection of all data

R distribution

Projection of the data
for R > 1.3

August 2009 Adrian Bevan 23

Plotting 4: Likelihood Ratio Plots

A limitation of making a projection while cutting on a likelihood ratio

is you don't see how good the agreement is between all events in

the data, and your PDF model.

Compute the likelihood ratio R integrating over all space, and plot this instead.

argSet is a RooArgSet of the

 variables x.

nSig and nBG are signal and

 background yields.

Any significant discrepancy between data and MC would indicate a
problem with the model assumed.

AFitLRPlot lrplot;

lrplot.makePlot(signalPDF, bgPDF, argSet, data, nSig, nBG);

Data

Signal (MC generated from PDF)

Background (MC generated from PDF)

August 2009 Adrian Bevan 24

Summary

AFit has a number of utilities to facilitate defining a likelihood fit and

validating it.

Statistical tools for testing correlations between input variables

(and other calculations).

Interface to TMVA in order to define your favourite multivariate
analyser, and append this variable toy your data and Monte

Carlo Files.

An interface class to facilitate running pure and embedded toy

Monte Carlo experiments.

Plotting interfaces to RooFit.

