
AFit
an introduction

Adrian Bevan

http://pprc.qmul.ac.uk/~bevan/afit/

http://pprc.qmul.ac.uk/~bevan/afit/

July 2009 Adrian Bevan 2

Overview
What is AFit?

AFit Home Page

Making a PDF
PDF Builders
Factory classes: AFitPdfFactory, and
AFitComponentFactory
The AFitMaster

Where to find out more information

July 2009 Adrian Bevan 3

What is AFit?
AFit is an interface to RooFit and TMVA

RooFit:
Simplify the process of defining and implementing the code
required to construct a likelihood.
Provide the option to delegate the likelihood configuration
completely to an ASCII file.
Provide utilities to simplify validation and interpretation of the
likelihood.

Plotting, pure and embedded toy Monte Carlo simulations,
correlations between discriminating variables etc.

TMVA:
Simplify the process of defining which classifiers to train and
evaluate.
Provide an interface to append classifiers to your
RooDataSet(s).

July 2009 Adrian Bevan 4

AFit Home Page

July 2009 Adrian Bevan 5

Making a PDF
PDFs are accessed via a ‘PDF builder’.

This is derived from the AFitAbsPdfBuilder class.

There are three ways to make a PDF in AFit:

1. Use an AFitAbsPdfBuilder derived object directly.

2. Use a Factory class to make the builder.

3. Use the AFitMaster.

July 2009 Adrian Bevan 6

PDF builders
What is a builder?

Each AFit PDF is made using a PDF Builder.

Has an instance of all RooAbsReal and RooCategory types that define
the shape of the PDF.

Contains a RooArgSet of these variables called ‘varSet’.

Makes a RooAbsPdf by calling the getPdf() function.

Discriminating variable

AFit pdf Builder

RooAbsPdf object to use for fitting Unique name of PDF

e.g. consider the AFitArgus builder as an example

July 2009 Adrian Bevan 7

PDF builders
The AFitArgus builder has data members:

xi (ξ).
endpt (m0).

These are both objects of type RooRealVar.
Have names derived from the PDF builder name. e.g. for a builder with
name “arguspdf”:

The name of xi will be “arguspdfxi”.
The name of endpoint will be “arguspdfendpt”.
Parameter suffixes match the corresponding RooFit PDF variable names.

The functional form of this PDF is

The parameters can be read from a configuration file specified by using the
AFitAbsPdfBuilder::setDataCard(const char *) member
function, before calling the getPdf() function to instantiate the
RooAbsPdf.

July 2009 Adrian Bevan 8

PDF builders
The configuration file used to specify the values (and fit ranges) of ξ
and m0 looks like the following example:

The getPdf() function returns an Argus PDF with the specified
parameters. As this is a RooAbsPdf, it can be manipulated in the
usual way.

e.g. the PDF can be plotted using

[arguspdf]
arguspdfxi = -20.0 L(-100 - 10)
arguspdfendpt = 5.29 +/- 0.001 C L(5.25 – 5.30)

RooPlot * frame = x.frame();
argusPDF->plotOn(frame);
frame->Draw();

July 2009 Adrian Bevan 9

PDF builders
You don’t have to use a configuration file: each
PDF builder has an instance of its variables.

PDF parameters can be set by hand in a macro:
RooRealVar x("x", "M_{ES}", 5.25, 5.29);

AFitArgus argus(x, "arguspdf");

argus.endpt->setVal(5.289);
argus.xi->setVal(-21.0);

RooAbsPdf * argusPDF(0);
argusPDF = argus.getPdf();

RooPlot * frame = x.frame();
argusPDF->plotOn(frame);
frame.Draw();

July 2009 Adrian Bevan 10

PDF builders
If you have several similar PDFs for different
components, it can useful to ensure that these have
some common parameters.

e.g. Argus endpoint for continuum and charmbackground.

Need to use the same variable for this.

Simple to implement this for any PDF:

Can also do this in a macro [before calling getPdf()]

newVar must have been created before you try and replace the
existing parameter for this PDF (oldVar) with it.

argus2.variablesToReplace.setVal(“oldVar:newVar");

[arguspdf]
arguspdfxi = -20.0 L(-100 - 10)
arguspdfendpt = 5.29 +/- 0.001 C L(5.25 – 5.30)
argusvariablesToReplace = argusendpt:continuumendpt

July 2009 Adrian Bevan 11

PDFs with multiple components (+)
AFitAddPdf can be used to easily combine several PDF components
together.

Easy to set up a two Gaussaian + argus PDF.

Easy to configure using a data card.

1 1 2 2() () () 1 ()i n
i

x f x f x f x⎛ ⎞
= + + + −⎜ ⎟

⎝ ⎠
∑…P P P P

RooRealVar x("x", "", 0, 3);
AFitAbsPdfBuilder::setDataCard("datacardAddPdf.txt");
AFitAddPdf pdf(x, “DGA", "gaussian,gaussian,argus");
RooAbsPdf * PDF = pdf.getPdf();

[DGA]
DGA_frac0 = 0.3 +/- 1.0
DGA_frac1 = 0.3 +/- 1.0

[DGA_0]
DGA_0mean = 1.0 +/- 0.0
DGA_0width = 1.0 +/- 0.0

[DGA_1]
DGA_1mean = 0.0 +/- 0.0
DGA_1width = 0.2 +/- 0.0

[DGA_2]
DGA_2endpt = 3.0 +/- 0.0
DGA_2xi = -20 +/- 0.0
DGA_2power = 0.5 +/- 0.0

Specify the fractions for the PDF under [DGA]

Specify PDF parameters for the three PDFs
(the order specified in constructor is preserved
in the numbering of sub-component PDFs)

July 2009 Adrian Bevan 12

PDFs with multiple components (+)
AFitAddPdf can be used to easily combine several PDF components
together.

Easy to set up a two Gaussaian + argus PDF.

Easy to configure using a data card.

1 1 2 2() () () 1 ()i n
i

x f x f x f x⎛ ⎞
= + + + −⎜ ⎟

⎝ ⎠
∑…P P P P

RooRealVar x("x", "", 0, 3);
AFitAbsPdfBuilder::setDataCard("datacardAddPdf.txt");
AFitAddPdf pdf(x, “DGA", "gaussian,gaussian,argus");
RooAbsPdf * PDF = pdf.getPdf();

[DGA]
DGA_frac0 = 0.3 +/- 1.0
DGA_frac1 = 0.3 +/- 1.0

[DGA_0]
DGA_0mean = 1.0 +/- 0.0
DGA_0width = 1.0 +/- 0.0

[DGA_1]
DGA_1mean = 0.0 +/- 0.0
DGA_1width = 0.2 +/- 0.0

[DGA_2]
DGA_2endpt = 3.0 +/- 0.0
DGA_2xi = -20 +/- 0.0
DGA_2power = 0.5 +/- 0.0

Specify the fractions for the PDF under [DGA]

Specify PDF parameters for the three PDFs
(the order specified in constructor is preserved
in the numbering of sub-component PDFs)

July 2009 Adrian Bevan 13

PDFs with multiple components (×)
AFitMultiplyPdf can be used to easily combine several PDF
components together (e.g. efficiency functions):

Easy to instantiate this PDF:

Easy to configure using a data card.

1 2() () ()x x x= × ×…P P P

RooRealVar x("x", "", -1.0, 1.0);
AFitAbsPdfBuilder::setDataCard("macros/testMultiplyPdf.txt");
AFitMultiplyPdf pdf(x, "helicity_pdf", "poly2,helicity");
RooAbsPdf * PDF = pdf.getPdf();

[helicity_pdf]
types = poly2,helicity

[helicity_pdf_0]
helicity_pdf_0_p0 = 0.2 +/- 0.0 C L(-1.0 - 1.0)
helicity_pdf_0_p1 = 0.2 +/- 0.0 C L(-1.0 - 1.0)

[helicity_pdf_1]
helicity_pdf_1_type = xsqr

Specify the PDFs to multiply

Specify the PDF parameters

July 2009 Adrian Bevan 14

PDFs with multiple components (×)
AFitMultiplyPdf can be used to easily combine several PDF
components together (e.g. efficiency functions):

Easy to instantiate this PDF:

Easy to configure using a data card.

1 2() () ()x x x= × ×…P P P

RooRealVar x("x", "", -1.0, 1.0);
AFitAbsPdfBuilder::setDataCard("macros/testMultiplyPdf.txt");
AFitMultiplyPdf pdf(x, "helicity_pdf", "poly2,helicity");
RooAbsPdf * PDF = pdf.getPdf();

[helicity_pdf]
types = poly2,helicity

[helicity_pdf_0]
helicity_pdf_0_p0 = 0.2 +/- 0.0 C L(-1.0 - 1.0)
helicity_pdf_0_p1 = 0.2 +/- 0.0 C L(-1.0 - 1.0)

[helicity_pdf_1]
helicity_pdf_1_type = xsqr

Specify the PDFs to multiply

Specify the PDF parameters

July 2009 Adrian Bevan 15

PDFs with multiple components (×)
this helicity×poly2 PDF looks like:

Where p1 and p2 are the parameters of the PDF.
In a similar way one can compute a composite
sum of PDFs.

The symmetric ‘helicity’ PDF

Acceptance function ‘poly2’
(defined using a polynomial)

The composite PDF

()2 2
1 2()x x p x p x= +P

July 2009 Adrian Bevan 16

Non-parametric PDFs
Types available: Histogram “1dhist”

KEYS “1dkeys”

1dhist
Data Points = histogram (read from file)

Curve = smoothed histogram, smoothing
option = 2.

RooRealVar x("x", "x", 0.0, 1.0);
AFitHist pdfbld(x, "pdf");

pdfbld.datafile.setVal("macros/testHistPdf.root");
pdfbld.histname.setVal("hist");
pdfbld.order.setVal(2);
RooAbsPdf * pdf = pdfbld.getPdf();

July 2009 Adrian Bevan 17

Non-parametric PDFs
Types available: Histogram “1dhist”

KEYS “1dkeys”

1dkeys Data Points = histogram (read from file)

Curve = smoothed histogram,
KEYS algorithm (sum of
Gaussian kernels).

rho = smoothing parameter.

RooRealVar x("x", "x", 0.0, 1.0);
x.setBins(25);
AFitKeys pdfbld(x, "pdf");

pdfbld.datafile.setVal("macros/testKeysPdf.root");
pdfbld.treename.setVal("data");
pdfbld.rho.setVal(1);
RooAbsPdf * pdf = pdfbld.getPdf();

July 2009 Adrian Bevan 18

Available PDFs
PDF library includes everything
you’d expect

RooFit PDFs [only 2D missing]
Common line-shapes.
Sigmoid
Veto/step
Resolution models
Decay models for CP fitting

Add PDFs together in 1D.

Multiply PDF by an ‘efficiency
function’ (e.g. helicity distribution).

Multiply PDFs together to make
ND PDFs.

July 2009 Adrian Bevan 19

Factory Classes
There are two types of Factory classes:

AFitPdfFactory:
Construct one of the PDF types known to AFit (or a
composite of one of these types). The PDF can either be
one-dimensional or N-dimensional.

AFitComponentFactory:
Construct a fit component; e.g. and N-dimensional signal or
background PDF.

Components are:
default = a product of one-dimensional PDFs
composite = the sum of a set of PDFs, each being the

product of one-dimensional PDFs.
vvpolarization = a longitudinal+transverse spin 0→11 model

July 2009 Adrian Bevan 20

AFitPdfFactory
Make an instance of the factory, then call a makePdf
function to instantiate a PDF builder:

Use the factory to make PDFs of different types

Can be useful in setting up 1D
fits… but not optimal for more
complicated problems.

AFitAbsPdfBuilder::setDataCard("datacard.txt");

RooRealVar x("x", "x", 0.0, -5, 5);
AFitPdfFactory fact;

AFitAbsPdfBuilder * bld =
(AFitAbsPdfBuilder *)fact.makePdf(“G", “gaussian”, x);

RooAbsPdf * G = bld->getPdf();

July 2009 Adrian Bevan 21

AFitPdfFactory
The PDF Factory uses a unique ‘PDF Factory Label’ to identify the
type of PDF to be built.

These are listed in the user guide and in the table back on page 11.

Some PDFs may depend on conditional variables. For example, the
resolution function.

These can be made by calling the makeConditionalPdf function to
instantiate a PDF builder.

.

.

.

July 2009 Adrian Bevan 22

AFitPdfFactory
Multi-dimensional PDFs can also be made using call to makePdf:

This actually makes an AFitProdPdf object.

AFitAbsPdfBuilder * AFitPdfFactory::makePdf(TString name,
RooArgList &discVarList)

RooRealVar x("x", "", -1, 3);
RooRealVar y("y", "", 0, 3);
RooRealVar q("q", "", -2, 3);
AFitAbsPdfBuilder::setDataCard("datacardProdPdf.txt");
RooArgList discVars;
discVars.add(x);
discVars.add(y);
discVars.add(q);

AFitPdfFactory fact;
AFitAbsPdfBuilder * componentPDF = fact.makePdf("component", discVars);

RooAbsPdf * PDF = componentPDF.getPdf();

The discriminating variables

The data card specifying the PDF
configuration and parameters.

The 3D RooAbsPdf model P(x, y, z).

This brings us onto
the topic of fit
components

July 2009 Adrian Bevan 23

AFitComponentFactory
The different PDF components implemented are:

default:

composite:

The Ci are themselves components, and they are combined with
relative fractional weighting fi.

vvpolarisation:

L = longitudinal, T=transverse, and ε are efficiencies.
fL is the fraction of longitudinal events, and fLeff is an effective
parameter related to fL.

July 2009 Adrian Bevan 24

AFitComponentFactory
Use is similar to the PDF Factory:

Define discriminating variable(s).

Specify datacard with fit configuration information.

Make the PDFs:

There is also a global PDF builder class that can make
the whole fit model for you.

RooRealVar x("x", "", -1, 3);
RooRealVar y("y", "", 0, 3);
RooRealVar q(“q", "", -2, 3);
RooArgList ll(x, y, q);

AFitAbsPdfBuilder::setDataCard("datacardComponentModel.txt");

AFitComponentFactory fact;
RooAbsPdf * signalPdf = fact.makeComp("signal", "default", ll);
RooAbsPdf * bgPdf = fact.makeComp("bg", "composite", ll);
RooAbsPdf * vvsignalPdf = fact.makeComp("vvsignal", "vvpolarisation", ll);

PDF name component type

List of discriminating variables.

July 2009 Adrian Bevan 25

The AFitMaster
The AFitMaster can

Build a multi-dimensional PDF with many fit
components.

Build a simultaneous PDF.

Fit data samples to define PDF parameters.

Write out a template datacard given an initial fit
configuration.

This class helps manage the construction of
your fit.

July 2009 Adrian Bevan 26

Using AFitMaster to build a model
Build a complicated model with a 2 line ROOT macro:

Have to specify fit configuration in text file (datacard):
You define the:

variables to use
fit components

component types

fit yields (assumes you want
to do an extended-unbinned
ML fit.

July 2009 Adrian Bevan 27

Using AFitMaster to build a model
Build a complicated model with a 2 line ROOT macro:

Have to specify fit configuration in text file (datacard):
You define the:

variables to use
fit components

component types

fit yields (assumes you want
to do an extended-unbinned
ML fit.

Component name + “Yield”

July 2009 Adrian Bevan 28

Using AFitMaster to build a model

The rest of the configuration file is used to specify the
shape parameters.

By default all parameters are allowed to float, and have a
dummy range.
Interface to fit to MC/data control samples (see user guide for
details).
Can also build a RooSimultaneous using getSimPdf().

You define the:
pdf types for each component

July 2009 Adrian Bevan 29

Using AFitMaster to build a model

The rest of the configuration file is used to specify the
shape parameters.

By default all parameters are allowed to float, and have a
dummy range.
Interface to fit to MC/data control samples (see user guide for
details).
Can also build a RooSimultaneous using getSimPdf().

You define the:
pdf types for each component

Component name used as block
name, and used as prefix for all
variable names.

July 2009 Adrian Bevan 30

Using AFitMaster to build a model
Defining the signal PDF parameters:

[signal_bMes]
signal_bMesmean = 5.28 +/- 0.01 C L(5.25 - 5.29)
signal_bMeswidth = 0.003 C L(0 - 0.04)
signal_bMeswidthL = 1.0000 L(0 - 0.04)
signal_bMeswidthR = 1.0000 L(0 - 0.04)
signal_bMesasymmetricWidth = false

[signal_bDeltaE]
signal_bDeltaEmean = 0.0000 C L(-0.3 - 0.3)
signal_bDeltaEsigma = 0.01 C L(0 - 0.6)

Signal mES distribution is a Gaussian:

Signal ΔE distribution is a Landau:

If asymmetricWidth=true, then the L
and R widths are used instead of the
symmetry one.

The type specified defines the variables
are used in the PDF, and the variables that
should be specified in the datacard.

July 2009 Adrian Bevan 31

Using AFitMaster to build a model
Defining the signal PDF parameters:

[signal_bMes]
signal_bMesmean = 5.28 +/- 0.01 C L(5.25 - 5.29)
signal_bMeswidth = 0.003 C L(0 - 0.04)
signal_bMeswidthL = 1.0000 L(0 - 0.04)
signal_bMeswidthR = 1.0000 L(0 - 0.04)
signal_bMesasymmetricWidth = false

[signal_bDeltaE]
signal_bDeltaEmean = 0.0000 C L(-0.3 - 0.3)
signal_bDeltaEsigma = 0.01 C L(0 - 0.6)

Signal mES distribution is a Gaussian:

Signal ΔE distribution is a Landau:

If asymmetricWidth=true, then the L
and R widths are used instead of the
symmetry one.

The type specified defines the variables
are used in the PDF, and the variables that
should be specified in the datacard.

C means parameter is constant

L(x – y) sets the allowed range for
parameters floating in the fit.

July 2009 Adrian Bevan 32

Using AFitMaster to build a model
Defining the continuum PDF parameters:

[continuum_bMes]
continuum_bMesendpt = 5.2900 C L(-INF - +INF) // [GeV/c2]
continuum_bMesxi = -20.0000 C L(-200 - 0)
continuum_bMespower = 0.50000 C L(-INF - +INF)

[continuum_bDeltaE]
continuum_bDeltaE_p0 = 0.1000 +/- 0.05 L(-1 - 1)
continuum_bDeltaE_p1 = 0.2000 +/- 0.05 L(-1 - 1)

Continuum mES distribution is an argus:

Continuum ΔE distribution is a polynomial:

The type specified defines the variables
are used in the PDF, and the variables that
should be specified in the datacard.

July 2009 Adrian Bevan 33

Using AFitMaster to build a model
Defining the BBg0 PDF parameters:

B background mES distribution is an argus:

B background ΔE distribution is a polynomial:

The type specified defines the variables
are used in the PDF, and the variables that
should be specified in the datacard.

[Bbg0_bMes]
Bbg0_bMesendpt = 5.2900 C L(-INF - +INF) // [GeV/c2]
Bbg0_bMesxi = -30.0000 C L(-200 - 0)
Bbg0_bMespower = 0.50000 C L(-INF - +INF)

[Bbg0_bDeltaE]
Bbg0_bDeltaE_p0 = 1.0000 C L(-1 - 1)
Bbg0_bDeltaE_p1 = 0.1000 C L(-1 - 1)

July 2009 Adrian Bevan 34

Using AFitMaster to build a model
How do I know what needs to be configured in the
datacard?

Each PDF has a unique name given by:

This PDF name us used in square brackets to start a ‘block’ of
the datacard. Within this block, PDF variables are defined.
The names of these variables can be found by reading the
source code for the class. They all start with the PDF name.

e.g. a 1dhist PDF is created using AFitHist. If you read
the code in the constructor function of the class (in
AFitHist.cc) you’ll see the following lines of code:

<component name>_<discriminating variable name>

datafile(name+"_file", "File name", "null"),
histname(name+"_hist", "Histogram name", "null"),
order(name+"_order", "Interpolation order", 0)

July 2009 Adrian Bevan 35

Using AFitMaster to build a model
e.g. a 1dhist PDF contd.

So if I want to configure a 1dhist PDF for component the
discriminating variable x of the component signal then
the block in the datacard would look like:

datafile(name+"_file", "File name", "null"),
histname(name+"_hist", "Histogram name", "null"),
order(name+"_order", "Interpolation order", 0)

The variable name rule description of the variable initial value (&range)
only values are appropriate
for this class.

[signal_x]
signal_x_file = myHistRootFile.root
signal_x_hist = theHistogramName
signal_x_order = 1 C Note: For the non-parametric PDFs, you

have to make sure that the ROOT files you
specify exist, and contain the data (e.g.
histogram) prior to making the PDF

July 2009 Adrian Bevan 36

Simultaneous PDFs
There is a getSimPdf() function that can be used to
build simultaneous PDFs:

The datacard needs to specify the categorie(s) and
splitting rules for the underlying RooSimPdfBuilder.

This problem is covered in one of the AFit examples.

AFitMaster master("AFit/example/cpfit_tagging.txt");
RooAbsPdf * pdf = master.getSimPdf();

catVars = signal_deltat_cat

signal_deltat_cat_categories = Lepton,Kaon1,Kaon2,KaonPion,Pion,Other,NoTag

signal_deltat_cat_splitrule = signal_deltat_cat :
signal_deltat_avgMistag,signal_deltat_delMistag,signal_tageff

The category used to split the PDF

List of variables to split by category labels

Labels for the category

July 2009 Adrian Bevan 37

Blinding
By default all yields are unblind.

It is trivial to blind a specific yield:
Each component coefficient has a variable called

which can have one of two values:

For example to blind the signal yield, add

to the [FitConfiguration] block of your datacard.

A RooUnblindOffset is used to blind parameters.

<coefficient name>_BlindingType

unblind [this is the default]
blind [use this value to blind parameter]

signalYeild_BlindingType = blind

July 2009 Adrian Bevan 38

Blinding
In addition to blinding yields using the
AFitMaster, you can blind CP asymmetries:

AFitBCPGenDecay has the option to blind S and C.

You can blind S and C by adding

to the datacard block that defines the parameters for
this PDF.

When fitting several components with a TDCPV
model for Δt, the blinding of S and C for each
component is independent.

<pdf name>blindingState = blind

July 2009 Adrian Bevan 39

Example: τμ
Simple undergraduate experiment

μ

t1 e
ν

t2

Neglecting detector resolution effects, t = t2-t1 has the
form of an exponential (signal) + constant (background)
distribution:

t (μs)

Straightforward to write a data
card and use the AFitMaster
to fit such a distribution.

This example is also documented
in the user guide.

July 2009 Adrian Bevan 40

Example: τμ
The macro:

These are all the steps required in a ROOT
macro to prepare a PDF for fitting.

AFitMaster master("AFit/example/MuonLifetime.txt");
RooAbsPdf * pdf = master.getPdf();

TFile f("AFit/example/MuonLifetime.root");
TTree * tree = (TTree*)f.Get("data");

RooArgSet * compSet = pdf->getComponents();
RooArgSet * parSet = pdf->getParameters(compSet);

RooRealVar * t = (RooRealVar*)parSet->find("t");

RooDataSet data("data", "", tree, RooArgSet(*t));
data.Print("v");

pdf->fitTo(data, "etrm");

Specify the data card
and make the pdf.

Prepare a
RooDataSet for

fitting

Fit the data

July 2009 Adrian Bevan 41

Example: τμ
The data card.

[FitConfiguration]
// specify the variables and components to use in the fit
variables = t
components = signal,background
fitOptions = etrmh

t = 0.5 +/- 0.01 L(0.5 - 20.0) B(50)

signal = default
background = default

signalYield = 30000 +/- 10.000 L(-100 - 1e6)
backgroundYield = 100 +/- 100.000 L(-1000 - 1e4)

[signal]
signal_t_type = exp

[background]
background_t_type = poly1

[signal_t]
signal_tconstant = 2.2 +/- 0.1 L(-4.0 - 4.0)
signal_tfitLifetime = true

[background_t]
background_t_p0 = 0.0000 C L(-1 - 1)

Specify the discriminating variables
and pdf componets

Define discriminating variable
ranges

Specify the fit component types and
yields.

Specify the PDF types for
the components

Specify the parameters
for the PDFs.

July 2009 Adrian Bevan 42

Overview of the package

AFit PDF
builders

RooFit
PDFs /
TMVA

AFitPdfFactory

AFitComponentFactory

AFitMaster

Utility classes:
Plotting
Statistics
Toy MC studies
TMVA Interface

Once the model has been instantiated as a
RooAbsPdf, the utilitiy classes can be used to
validate and develop the model, fit data, and inspect
the results. The utilities are independent of the AFit
builders and can be used with any RooAbsPdf.

Can use the AFitMaster, Factories
or builders to make RooAbsPdf
objects. These can be used as is
or combined with other
RooAbsPdfs using RooFit directly.
Alternatively they can be used
with one of the AFit utility classes.

July 2009 Adrian Bevan 43

Where to find out more information
AFit is available from:

http://pprc.qmul.ac.uk/~bevan/afit/

Available for down load:
User guide
Source code
Examples available (sub-directory of source code):

Exponential decay fit for lifetime
MES-ΔE fit configuration for signal + continuum + B background
Simultaneous PDF
How to set up a simple time-dependent CP fit

Web page also has quick start compile instructions.

Requirements: ROOT v5.20 or v5.22.

Need to pre-compile ROOT with RooFit, or compile RooFit before
compiling AFit (requires modification of GNUMakefile.standalone).

http://pprc.qmul.ac.uk/~bevan/afit/

July 2009 Adrian Bevan 44

AFit Home Page

July 2009 Adrian Bevan 45

Documentation available:

	AFit�an introduction�
	Overview
	What is AFit?
	AFit Home Page
	Making a PDF
	PDF builders
	PDF builders
	PDF builders
	PDF builders
	PDF builders
	PDFs with multiple components (+)
	PDFs with multiple components (+)
	PDFs with multiple components ()
	PDFs with multiple components ()
	PDFs with multiple components ()
	Non-parametric PDFs
	Non-parametric PDFs
	Available PDFs
	Factory Classes
	AFitPdfFactory
	AFitPdfFactory
	AFitPdfFactory
	AFitComponentFactory
	AFitComponentFactory
	The AFitMaster
	Using AFitMaster to build a model
	Using AFitMaster to build a model
	Using AFitMaster to build a model
	Using AFitMaster to build a model
	Using AFitMaster to build a model
	Using AFitMaster to build a model
	Using AFitMaster to build a model
	Using AFitMaster to build a model
	Using AFitMaster to build a model
	Using AFitMaster to build a model
	Simultaneous PDFs
	Blinding
	Blinding
	Example: 
	Example: 
	Example: 
	Overview of the package
	Where to find out more information
	AFit Home Page
	Documentation available:

