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Overview

= Session 1: 90 minutes
= What do we mean by Multivariate analysis?
= Cutting on Variables
= Fishers Linear Discriminant
= Neural Networks

= Session 2: 90 minutes

= Decision Trees
= Binary, Boosting, Bagging .... and forests

= A Quick Tour of TMVA

= Session 3: 60 minutes
= Example: Charmless B decays.
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What these lectures are (not)!

= These lectures are not a tour de force of all of the

latest MVA techniques.
= See |. Narsky: BaBar Analysis School (2008) for such a treatment.

= http://www.slac.stanford.edu/BFROOT/www/QOrganization/Workshops/
2008/Babar Physics Analysis School/bas-program.html

" These lectures are an introduction to the subject:
= A finite set of algorithms are discussed in depth.

= Hopefully there is enough detail for you to understand
what the algorithms do, and how to use them.

= A set of examples is also given so that you will be able to
train algorithms to target sets of data and develop a
deeper understanding of how they work.
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Lecture 1

* |n the next 90 minutes we will cover:

= What we mean by Multivariate Analysis
= Classification of sub-samples of events
= Desirable properties of the classification algorithm
= Choosing the best algorithm for classification

= Discuss some common MVA techniques:
= Cutting on variables
[a short recap of something that is very familiar]
= Fishers Linear Discriminant
= Neural Networks

Concentrating on the Multi-Layer Perceptron
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What do we mean by Multivariate Analysis?

= We start with a data sample of interesting events: U

= Each event can be described in terms of n dimensions (or n
discriminating variables) of interest.

= This sample contains more than one class of events: A, B, ...
= Lets just consider the case of two classes (simple to generalize

to more)
Note: If the intersection of Aand B is
= So:
AC U’ and B CU null, then the problem is not interesting,
ANB 7& (Z) and we can easily separate the two

classes of interest with a set of cuts.

/_\,

Q) How can we optimally
Sample A Sample B separate classes A and B in
n dimensions?
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What do we mean by Multivariate Analysis?

= Consider the event e;:
= e =e/(x) =el(xy, Xy, X, ...., X,), Which is the it" event of a dataset U.
= How do we determine the Aness or Bness of a given event e;=e,(x)?

*We need some way to assign a probability
to the hypothesis that event e, is of class A. Plese A) <1

*The complement is the probability that e, is

in the class B (as we are only considering P(e; e A)=P(e; € B) <1
two classes).

*Most of the time we can't tell for certain if
an event e, is of class A or class B. Background

Think of the familiar example of a
signal region, where we know that the
signal purity will be higher in this
region, than outside it.

Signal region

AE (GeV)
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What do we mean by Multivariate Analysis?

= What are the desirable properties of the classification
algorithm?

I ERTEY FURTY RRTEY AUTRE RYNTY RVNTL IR PYAT:
cccccccc

a3 Jo 1qunN x )

Would like to combine the information in

X into a single output variable that has a larger
separation between A and B than any of the
individual input variables x.

Number of entries

Want maximal separation between A and B.

= Sl e b ey 1 I I
00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X
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What do we mean by Multivariate Analysis?

= The MVA we perform requires that we choose an algorithm f to
operate on e, and produce some output O;:

O; = f(ei)

= What is a good (or optimal) algorithm to use?

= Separation of classes A and B = Experimental sensitivity:
= Statistical precision on some measured observable?
= Precision (including systematic uncertainties) on some measured observable?

= Understandable algorithm:

= s it easy to understand what should have happened when defining the parameters of the
function f?

= Can we tell when something has gone wrong?
= Are there well known pathologies with a technique?

= Ease of use:

= Toolkits such as TMVA, StatPatternRecognition, TMultiLayerPerceptron,
NeuralNetworkObjects (NNO) etc. mean we don't have to code f ourselves.

= But ... that means we don't have to understand what happens inside the black box, which
can be a very bad thing!

= Should properly consider how training and uncertainties affect our choice of f.
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What do we mean by Multivariate Analysis?

= The MVA we perform requires that we choose an algorithm f to

operate on e, and produce some output O;:

O; = f(ei)

= What is a good (or optimal) algorithm to use?

" S eThereis no single right answer to this question.

*Need to understand the issues relevant to the problem we
J are trying to solve, and make a balanced decision as to
what the best choice is.

*As a rule of thumb —try and keep things simple
*... unless there is a significant gain to justify increased
complexity).

The best algorithm to use is the one you understand!
Never use an algorithm you don't ...

oters of the

box, which

=4
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Cutting on variables
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Cutting on Variables

= This is a (very) short recap of what you already know...
= Apply an n-dimensional step function to an event e;:

Y Retain Event:

e ‘> — ‘> Ple;e A) >0

cut value ¢ Discard Event: L
jis the index used to loop over the n P (eZ 6 B) ls Slgnlﬁcant

dimensional hyperspace.

= Determine the cut values using some optimization recipe:
= Significance S of the signal A in the presence of a background B.

Na
G —
VN4 + Np

= |n general the same steps are required to tune parameters of any
Multivariate algorithm:
= Define variables, algorithm, and recipe used to determine parameters of algorithm.
= Compute response function of applying algorithm on data.
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Fisher's Linear Discriminant
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Fisher's Linear Discriminant

= Consider the case when we have a sample of data U
containing a signal class and a background class.

= We can use quantitative descriptors of the sets of signal
and background events to develop a multivariate
discriminating variable O,(x) for the i*" event:

Oi(z) = Z ojTij + 0
j=1

= We usually drop B in our discussion as the offset is
arbitrary, and set for convenience.

= Again we want to maximize the separation between signal
and background.

= How?
= ... more to the point, how do we determine the coefficients a?
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Fisher's Linear Discriminant

sFor the ith event

X;

*What do we know about the data (Signal/Background)?
" u(x) and o(x) for each dimension for each type.

*"\We can write the Fisher mean and sigma of the

corresponding signal and background distributions as:

T
MS,B — :U‘S,B Z%,B — (XTU%,BOZ

(just the vector sum of the scaled mean and variance using the corresponding weights in a)
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Fisher's Linear Discriminant

" To maximize the separation between signal and
background we want to
" maximize |MS — MB|
= minimize the variances Z% and ZQB

= We can balance these requirements with:

Mg — Mpgl?
(o) = s = Mol
= where: i S 7B
[Ms — Mp)* = ) oiaj(us — pp)i(us — pg); = o’ Ba
i =1

N2+ X% = Z a;o;(Vs +Vg)i = o' Wa

t,J=1
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Fisher's Linear Discriminant

&T Bo B represents the separation between the classes

J(@) =

OzTWOz W represents the sum of covariances within the classes

Optimal separation can be found for
0J
(@ _,
8042-

1 Need to be able to compute WL, If
where a oc W (,US — ,UB) W is singular then we can't use the
Fisher method.

So we can compute the output of the fisher given target
samples of signal and background events.

The solution can be determined up to an arbitrary scale.
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Fisher's Linear Discriminant

= Let's see an example (s — up) = (—0.9,—1.0)
0.25 0
i (M, 0)s =(0.1, 0.3) —
(1, 0), = (1.0, 0.4) w ( 0 0.29 )

N3 £ [ a=(-3.6,-344)
e a3 Signal
A TS el ORI NN | £ Background
80—
-
3 (1, 0)s = (0.2, 0.2) “F
s (1, 0)g = (1.2, 0.5) 2
i IOOE_ 0_ 1.5 -1 0.5 I 0 0.5
80[— 0
e (the Fisher discriminant output has signal as
2";_ positive. Flip the sign in the mean difference
ST e T T T term to reverse this behavior).
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Fisher's Linear Discriminant

Consider the variable x.

= |f this is symmetric about the mean value, and both signal
and backgrounds have the same mean, then the variable

will not contribute to the fisher.
= So for this case a; = 0.

= |f the x distribution has a different shape for signal and
background, then you can use |x| as the fisher input
instead.

Number of entries

Number of entries
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Neural Networks
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Neural Networks

= These are non-linear algorithms:
= (Called Artificial Neural Networks: ANN or just Neural Networks NN.

= The fundamental building block of a NN is the perceptron (algorithmic
analogy of a neuron).

Impulse: Binary Response:
n inputs Threshold Output
y=w.x+b

y is the definition of a plane in

If y > 0, then () = 1 n-dimensional hyperspace.
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Neural Networks

= The perceptron looks like familiar concept...
... recall the logic used when cutting on a set of variables

Y Retain Event:

e; ‘> l— ‘> P(e; e A) >0

—— cutvalue Discard Event:

P(e; € B) is significant

= The perceptron is doing the same thing for a given w and b.
= |t makes an cut in the problem hyperspace.

= Recall that all cut information is encoded in c for a cut based analysis.

= This tells us something useful: A single perceptron won't help us any more
than optimally cutting on the data.

= Canreplace the binary decision with any activation function:

y = f(w.z + b)
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Neural Networks

= The next logical step: the Multi-Layer Perceptron (MLP).

= Combine layers of perceptrons in a way so as to obtain a refined
separation between classes A and B.

= Modify the output of a perceptron so that it is some function with an

output (usually) between 0 and 1:

= Step function's can be used (as done up until now)
= Any other suitable function can be adopted for the activation function.
= The Sigmoid (or logistic) function is often used:

T 1

o.sf—y - ]_ _|_ ecm:-l-,@

0.6—
0.4—

02—

ot e R R

1

-:> Y= 1+ eq.z+p3

commonly used activation
functions include

sigmoid (0, 1)

tanh (-1, +1)

step (0, 1)

radial (0, 1)
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Neural Networks

=  An example of an MLP with
. Looks good but...
" ninputs
= 1 hidden layer of n nodes
" loutput ... what are we supposed to do now?

" Input Hidden Output
= Decide on the activation function to use for each node/layer.

= Determine the weights used to evaluate y, for each node.
= Check that we have not over-trained our network
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How do we find weights?

= Start with an initial guess for the weights.

= Determine how good an estimate this is (using a measure of the error
€ in the output classification).

= Estimate a new set of weights using the rate of change of error with
respect to weight.

= re-evaluate the error on the new set of weights.

= When the result is stable and good enough, we stop iterating,
and have determined the parameters that define the network.

= Q) Is our solution the global minimum?
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How do we find weights?

= Consider for the moment the simple case of a single
perceptron:

= Class A (t=1) and Class B (t=0) events e, from a total data sample U are
input to the perceptron (supervised learning).

= We want to train our algorithm, so we know the target type t, of each
event e..

= Sometimes we get the classification wrong, and characterize this by an

error €. 2
I / o 5 (ti B yz)
Error Target type output of perceptron

(activation function)
= So for the whole data sample U, containing N events, we have a total

error E: N 1
E — EIL - 2
: Z 2
=1 =1

a.j.bevan@gmul.ac.uk 25



How do we find weights?

= Now that we have defined an error, we can:
= Guess a set of weights.
= Evaluate the error related to using those weights.

= Next we have to estimate the new set of weights:

*Want to try and estimate a new value for w, some
AE - OF small distance from the initial value: w, 2 wy+Aw.

Aw — Ow

*At the same time we want to move toward the
minimum, so let
oF

Aw — —q——
w o

where a is a small positive parameter (learning rate).

Hence: 2
AE = —« (0_E>
ow

which is always negative.
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How do we find weights?

= Now that we have defined an error, we can:

= Guess a set of weights.
= Evaluate the error related to using those weights.

= Next we have to estimate the new set of weights:

So we can how compute w,=w,+Aw using

AFE N OF R I
Aw  Ow w=—as
and
N N 1
2
| BE=) e=) 5ty
| 1=1 1=1
: for our dataset. They, is given by our choice
: of activation function.

This is called gradient descent on an error or the delta rule.
It illustrates the principle used to determine weights.
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Back propagation

= This is a supervised learning method that we can use to
determine the weights (or parameters) of the activation
functions used in our MLP.

= This is a generalization of the delta rule.
There are many nodes, hence

X, > many many weight parameters
N 7/ to determine when training an
X . A=
=7 MLP,
oRGK AP
X, —— 5 S NN
3 S N7 SE S
NHKRB K2
782D This i li d bl
7RO is is a complicated problem
—* XSRS > 0 . . . .
‘:ﬁ‘e"“"“‘q\ akin to a multi-dimensional fit
Xe —p o V'AA“_"AS .
s % with many free parameters.
Need to consider the error
X, »

contribution from each node in
each layer.
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Back propagation

= Apportioning blame (or contribution to the network)

= Consider a node j, with some number of connections to
the next layer of the MLP: k

. 1S the input value to the node j.
- Either input variable to MLP, or
output of a previous layer.

Xinpu

w;, is the weight of the connection.

= We need to evaluate the error from each assignment of
target value using the activation functions of each node.
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Back propagation

= So we need to take into account error contributions from:

OF
= Hidden layer nodes. W, K ijk — (mfinputAt—

j ow
|
OUtpUt Iayer nodes. At depends on the type of node.

when training an MLP. These are given by: ~ ®isthelearningrate.

Xinput IS INPUt to node j.

Hidden node: At = Y (t; — y;)wjx

k nodes

Output node: At = ti —y;

= Again: this is a generalization of the delta rule, so the
optimization algorithm works on error minimization/gradient
descent.
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Training the MLP

= This is a multi-parameter problem.

= There are many minima, and we want to converge on the

global minimum, not on a local one.

Global minimum

1<

There are many nodes, hence
many many weight parameters
to determine when training an
IMILP.

This is a complicated problem
akin to a multi-dimensional ML
fit with many free parameters.

= Determining the global minimum can be non-trivial.
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Training the MLP

= |n order to train the MLP we need two samples of data:
= Sample A, which is a data-set containing M entries of class A events.
= Sample B, which is a data-set containing M entries of class B events.

You don't have to use equal numbers
of events for both classes, however
not doing so will affect the
convergence of your network. You are
advised to keep to using equal
number of events in samples A and B.

= How do we know when training has finished?

= Just compare the error against some anticipated threshold?

= Just compare the error gradient against some anticipated threshold?
= Compare the error obtained against a validation sample.
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Training the MLP

= Why use a validation sample?

= Provides a statistically independent reference point.

= Solution should be more robust than using all data for
training.
= Con: Slower convergence on the optimal solution.
= Con: Corresponding limits on the ability to train a complicated net.

= Pro: You've not fine-tuned your algorithm on a single statistically
limited sample [You will always want more statistics].

= Pro: If the training and validation samples perform the same with a
set of weights, then you can have faith in the network
configuration when applying it to data.
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How much data do we need to train an MLP?

= As arule of thumb, the number of events scales with
the complexity of the network as follows:

M = sample size
W = number of weight parameters
N = number of nodes

e = error threshold

If there is a single hidden layer, to avoid failing to train a net properly you want to
make sure that the training sample size M satisfies:

o)

If your sample doesn't satisfy this then you run a high risk of misclassification of events.

If the network is more complicated then you should try to ensure that:
|44
M >0 [— log(N/e)
€

Baum & Haussler, Neural Comp. 1 151-160 (1989)

a.j.bevan@gmul.ac.uk 34



How much data do we need to train an MLP?

= Example:

= an MLP with 1 hidden layer of 10 nodes,10 inputs and 1
output node (so... W=(10+1)x10), and the misclassification
error level you want to achieve is 0.1:

o[

= You want more than 1100 training events to have a
reasonable chance of obtaining an optimal separation of
signal and background.

= This doesn't mean that you get a properly trained net —
you have to do some more checks to ensure that!
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Validating the result

= Qvertraining occurs when you have obtained weights that are
tailored to your specific sample of A and B events, rather than
being a true representation of the optimal discrimination
between the classes.

09— M=30
0.8

0.7 .
Is the line a reasonable boundary

to use as a cut between A and B?

0.6

0.5
0.4

0.3

0.2

0.1

_lIII|IIII|IIII|IIII|IIIIIIIlIIIIIIlIIIIIIIII|IlII

OO
o
o
(3]
(=]
W
=]
=N
= -
h
(=]
f=2)
(=]
~1
(=]
o]
o
O
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Validating the result

= Qvertraining occurs when you have obtained weights that are
tailored to your specific sample of A and B events, rather than
being a true representation of the optimal discrimination
between the classes.

y
y

0.9 M=30 ) 0.9
0.8
0.7 0.7

0.6 0.6

=

_IIII|IIIIlll]lllllll]lllllllllllII|IIII]IIIIIIIII

0.5 0.5

0.4 0.4

0.3 ¢ . y
A ) 02

0.1

0.2

0.1

_lIII|IIII|IIII|IIIIIIIIIIIIlI|IIII|IIII|IIII|IlII

ol b by b b by by b by g a g
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X X

OO
OO
(=]
(=]
3]
o
(98]
(=]
B
= -
o
(=]
=2
(=]
~
(=]
o0
o
o

The boundary has been tailored to the initial sample of statistics and (in this case) is

not the best choice of boundary for a separate sample.

This is an illustrates the need to have sufficient data to train. It highlights the issue of
statistical fluctuations in data. Don't tune on features of a specific data set!
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Validating the result

= Qvertraining occurs when you have obtained weights that are
tailored to your specific sample of A and B events, rather than

being a true representation of the optimal discrimination
between the classes.

0.9
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0.2

0.1

y

M=30 . 0.9

0.7

0.6

=

_IIIIIIIIIIIIIIIIIIIIIIIIlIIIIlIIIIlIIIIIIIIIIIIII

0.5

0.4

A ) 02

0.1

ol b by b b by by b by g a g

OO

OO
(=]
(=]
3]
o
(98]
(=]
B
= -
o
(=]
=2
(=]
~
(=]
o0
o
o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

A solution is to use a statistically independent sample to check the result of the
training, and to stop training only when the the training and reference samples give
the same performance (within tolerance).
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Validating the result

" [tis important that we have sufficient data to use in training:

= Makes sure that the result is sensible.

= Means that we can use an equal amount of data as a reference to
compare against.

= This can be a tough constraint as we often resort to MLPs when we

want to extract every last bit of information from the data, and usually
don't have events to spare!

= Similarly make sure that you don't over-train your MLP. How
do you know if you are converging on a general feature of the
data, or just a specific feature of your dataset?

= Use a validation sample!

= The temptation is to use all data to train.
= Don't do it as you can't guarantee the result is sensible!
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Summary #1

= We have discussed the problem of optimally separating
different classes of events using several algorithms:

= Cutting on the n-dimensional hyperspace
= Using a Fisher discriminant
= Using an artificial neural network in the form of an MLP.

= The techniques used in each case have been reviewed, with
some of the technical details on how to determine the cut
parameters or weights.

= The next lecture reviews more MVA techniques, and will
introduce TMVA.

= The final lecture includes a tutorial with BABAR data.
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