
ATLAS Level-1 Calorimeter Trigger 28 February 2001

Software Note 001 Version Draft 0.3

Local Controllers
Murrough Landon

1 Introduction

This document sets out the requirements and suggested implementation of the

Local Controllers for the ATLAS Level 1 Calorimeter Trigger [1].

The Run Control [2] package of the ATLAS Online Software [3] establishes

the concept of a Local Controller. This is a software component responsible for

implementing the state transitions required to bring a well defined part of the

ATLAS readout system from the initial, powered on state into the running state

(and back).

1.1 Hardware Overview

The Calorimeter Trigger consists of a number of VME crates containing many

different types of module.

• Eight preprocessor (PPr) crates: containing a CPU, up to 16 preprocessor

modules (PPMs), one timing control module (TCM) and two preprocessor

readout driver modules (PPRODs).

• Four cluster processor (CP) crates: containing a CPU, 14 cluster processor

modules (CPMs), two common merger modules (CMMs) and one timing

control module.

• Two jet/energy processor (JEP) crates: containing a CPU, 16 jet/energy

modules (JEMs), two CMMs and one TCM.

• Two readout driver (ROD) crates: containing a CPU, up to 13(?) common

processor readout driver modules (CPRODs), maybe one CERN BUSY

module (if not in the TTC crate) and perhaps a TCM.

• One TTC crate: contain a CPU, one TTCvi module, one PPROD BUSY

module, possibly one BUSY module for each of the two ROD crates (if not

located within those crates) and one overall BUSY module (unless spare

ports on one of the other BUSY modules are used for this purpose).

1



The trigger electronics chains will also contain

• Eight receiver crates (two for TileCal, six for LAr): containing up to 16

receiver modules and one SPACbus interface module. We will be respon-

sible for the TileCal crates while the LAr groups will responsible for their

receivers. However as the control of these systems is likely to be via a

SPACbus controller (which can manage several SPACbus interface cards)

sitting in some other crate, it may be worth having a single control crate for

all eight receiver crates.

• One receiver control crate (perhaps): containing a CPU and a SPACbus

controller module.

Additionally, in test setups, we may have:

• One or more DSS crates: containing a CPU and up to 6 DSS modules. In

test setups, this crate may be combined with either the TTC crate or the

crate containing prototype RODs.

The CPUs in each crate will be connected via a fast (or gigabit) ethernet

switch. The system will be controlled by one or more workstations. The worksta-

tions will run various DAQ server processes (at least in standalone mode), moni-

toring, display and user interface programs.

2 Requirements

The L1Calo Local Controllers

• shall be part of the ATLAS Run Control system and satisfy all its require-

ments. This will be achieved by basing them on the standard Local Con-

troller skeleton.

• shall be able to initialise and configure all the types of module found in the

Calorimeter Trigger including test modules, loading all kinds of calibration

and threshold data.

• shall be able to handle the complete final ATLAS system and arbitrary sub-

sets for tests.

• shall be able to start and stop a normal run.

• shall be able to start, operate and stop any of our various types of calibration

and test run.

2



• shall be able to change between run types.

• shall monitor the modules in each crate and report their status via the IS.

• should be designed to allow new run types to be added with minimal effort.

3 Design Issues

3.1 Run Control System Overview

The ATLAS Run Control scheme implements a hierarchy of controllers under-

neath a single root controller. It is expected that there will be single overall con-

troller for each major subdetector and that each subdetector will consist of one or

more lower levels of controllers. A subdetector with more than one TTC partition

might have one controller per partition. At the lowest level there would generally

be one controller per crate or readout system.

The run control system [2] defines a number of states and state transitions. The

main states are Initial, Loaded, Configured and Running. There is also a Paused

state, and a concurrent Fault state indicating the presence or absence of an error

condition.

Each controller executes an action method on making each transition. When

making a given state transition, a parent controller completes its transition action

before any of its child controllers start their actions. In the normal case, all child

transition actions occur in parallel (asynchronously). It is also possible to request,

per controller per transition, that they occur one by one (synchronously) either

in forward or reverse order, according to the order the children are listed in the

database.

The above ordering is the only synchronisation mechanism available. It is not

expected that actions in one crate should depend on actions in another crate and no

communication between child controllers is implemented. Synchronisation issues

in the L1Calo system are discussed in section 3.4.

3.2 Run Types

Apart from normal physics runs, we envisage a number of different kinds of cal-

ibration and test runs. The available run types can be defined for a given DAQ

Partition and the IGUI allows them to be selected at any time up to the transition

into the Running state.

In particular, the run type can be changed while the system is in the Configured

state. Hence any actions which may be dependent on the run type should be

3



done during the transition into the Running state. Examples probably include

downloading trigger settings and maybe even calibration data; loading of playback

memories with test vectors; etc.

3.3 Actions

The detailed actions for each transition in each crate need to be defined. A first

draft of these, for normal runs, are given in the appendix in tables 1, 2, 3, 4, 5, 6,

7, 8.

Further work is required to list the additional actions required for the various

types of calibration and test run.

In general, each crate will read all necessary information from the database

at the Load step. Some run type independent settings and checks can be made

at the Configure step. Final downloading of run type dependent information to

the modules can be done at the Start step. It may be wise to use the Resource

Manager (RM) package to lock crates (or possibly individual modules in some

cases?) against simultaneous use by another partition.

Some actions on the whole system require the use of the TTC system. They

are the kind of actions which might naturally be allotted to an overall system

controller, but as they require access to the TTCvi are naturally implemented in

the TTC crate.

Note that the DSS crate (or modules) are only required in some test setups.

3.4 Synchronisation

There are a few cases where we will require synchronisation between actions in

different crates. Specifically, some actions must either precede or follow other

actions. These requirements dictate the hierarchy of controllers we will need.

While it would be possible to use a different hierarchy for different situations, eg

calibration runs, it would be most desirable if the same hierarchy could be used in

all cases.

The following actions require synchronisation:

• Configure step: TTC broadcasts to initiate LVDS synchronisation should

ideally be done before VME actions in the affected crates.

• Start step: loading of playback memories and switch into playback mode

must be done before the TTC broadcast to start synchronous playback from

all modules (of a given type) in the system.

4



• Start step: TTC broadcast to start synchronous playback must be before

triggers are enabled.

• Start step: configuration of all processor crates should be complete before

the overall BUSY is removed. Q: within PP crates, is there an ordering

required between PPMs and PPRODs?

• Start step: configuration of all processor crates must be complete before

triggers are enabled. For local triggers this is easy as we enable our triggers

via the TTCvi. For CTP and calorimeter calibration triggers however, we

rely on the BUSY signal to veto triggers.

• Stop step: triggers should be disabled before playback mode is switched

off.

Some other possibilities include:

• Start step: configuration of processor modules before/after RODs? Eg CP/JEP

crates before/after ROD crates; PPMs before/after PPRODs in the same

crate.

3.5 Hierarchy

The synchronisation issues discussed in the previous section require that some

actions connected with trigger, TTC and BUSY signals must be executed either

before or after actions in the trigger processor crates.

The specification for the BUSY module allows the output BUSY signal to be

set directly via a VME register. Assuming our overall BUSY module is in the

TTC crate, all the above can be satisfied (I think!) using a two level run control

hierarchy where the TTC crate is separate from all the other crates. It is then a

simple matter in the overall L1Calo run controller to select the order in which the

actions in the “TTC” and “Others” controllers are executed in each transition.

Apart from possible concerns about actions in the ROD crate, all the other

crate actions can run in parallel.

Given these assumptions, a hierarchy of run controllers suitable for the slice

tests is shown in figure 3.5. In principle the hierarchy for the final system is

identical, except that there will be more of each kind of crate. Also there will be

controllers for the receiver crates which will not be present at the slice test.

5



L1Calo

TTC Others

PP

CP

JEP

ROD

Run Controller Hierarchy
for L1Calo Slice Tests

Final system probably similar, but with more than
one instance of PP, CP, JEP and ROD crates

sync

L1Calo run control hierarchy for the slice tests.

6



3.6 Calibration

[Further work is required here]

Preliminary discussions with the LAr and TileCal groups suggest two possible

scenarios for doing calibrations. Typically both involve a scan over a range of

values of some parameter.

This scan can be done in a single run. In this case the system has to operate

in a run/pause loop with the parameter value being changed during the pauses.

Alternatively it can be a series of runs, each of which uses a single value of the

parameter.

The multiple runs scheme may be controlled externally by some script. Oth-

erwise there are not many implications for the run control hierarchy or transition

actions.

The single run scenario however will require synchronisation between pauses

of the trigger (handled in the TTC crate after a specified number have been taken)

and changes of the parameter values in other crates. The Paused state (and Pause/Resume)

commands can be used for this purpose.

In this scheme, there would be a separate process polling eg the TTCvi to

count triggers. This process would then send Pause and Resume commands to the

Root run controller at the appropriate times. This “calibration sequencer” process

would be started and stopped by the normal run Start and Stop commands.

3.7 Implementation

It is expected that each crate in the system will have its own CPU It is therefore

sensible that there be one Local Controller running in each crate CPU to control

the modules in that crate.

It is not clear if each crate CPU will have its own disk. If so, the calibration

and other data required to initialise each crate should be kept local to that CPU. In

most cases, the calibration data will be generated locally. However the threshold

settings etc will need to be distributed to each crate from the central database.

Some of the various kinds of crates share the same kind of module. So the

Local Controllers in different crate will inevitably share some code. One approach

may be to develop a single Local Controller program containing the code relevant

to all module types. This program can read from the database which kind of crate

it is operating in and can handle the modules it finds there.

Apart from code specific to modules, there may well be other ancillary code

common to the Local Controller of different crates which will also be useful to

7



share. Also, in test setups, some crates may contain combinations of modules

which will always be in separate crates in the final system.

However if it turns out that the commonalities are exceeded by differences

between the various crates, splitting into several different programs may be more

manageable.

4 IS server and IGUI

The Local Controller in each crate needs to be able to publish information about

its crate. For this purpose we will run a dedicated IS server [4] for the L1Calo

system.

This should contain the following information:

• for each module in the full configuration, a status block with entries indi-

cating if the module is actually present, whether its links to other modules

are up, detailed error counts and any other useful data.

• for each crate in the full configuration, a status block with entries indicat-

ing if the crate is currently enabled, and summaries of error counts from

modules within the crate.

• from each PPM, the rate histogram for each channel (is this too much data

to ship around? Perhaps each crate just publishes a limited amount of pro-

cessed information?).

• other histograms from each crate?

We will almost certainly want to be able to specify run control parameters to

the run controllers – especially for calibration runs. The standard way to do this

is via L1Calo specific panels in the Integrated GUI (IGUI). Such panels, written

in Java, can set and display run parameter variables in our IS server. These can be

read by the run controllers before they execute each transition.

We should also provide an IGUI panel to display the status information read

from each module and summarised for each crate.

References

[1] ATLAS Level 1 Calorimeter Trigger: home page

http://hepwww.pp.rl.ac.uk/Atlas-L1

8

http://hepwww.pp.rl.ac.uk/Atlas-L1


[2] ATLAS Online Software Run Control component

http://atddoc.cern.ch/Atlas/DaqSoft/components/runcontrol

[3] ATLAS Online Software home page

http://atddoc.cern.ch/Atlas/DaqSoft

[4] ATLAS Online Software Information Service component

http://atddoc.cern.ch/Atlas/DaqSoft/components/is

9

http://atddoc.cern.ch/Atlas/DaqSoft/components/runcontrol
http://atddoc.cern.ch/Atlas/DaqSoft
http://atddoc.cern.ch/Atlas/DaqSoft/components/is


A State transition actions

The following tables give the detailed transition actions for each type of module.

Transition Actions

Initial→Loaded Read database:

– expected configuration of modules

– Etcorrections

Lock crate/modules via Resource Manager?

Loaded→Config Check expected modules are actually present

LoadEtcorrections into receiver modules via SPACbus.

[Assuming not run type dependent]

Update module status in L1Calo IS server?

Config→Running None

Running→Paused None

Paused→Running None

Running→Config None

Config→Loaded None

Loaded→Initial Unlock crate/modules via Resource Manager

Table 1: Actions for TileCal Receiver Crate

10



Transition Actions

Initial→Loaded Read database:

– expected configuration of modules

– default FPGA versions

– dead/hot/disabled channel masks

– energy calibrations

– coarse and fine timing calibrations

– BCID pulse shape calibrations

– BCID/FIR/saturation settings

– readout settings

– default rate histogram settings

– PPROD settings

Lock crate/modules via Resource Manager?

Loaded→Config Check expected modules are actually present

Check FPGA versions: reload and reset if required

Assert BUSY on all PPRODs

Update module status in L1Calo IS server?

Start rate monitoring program/thread

Config→Running Load all calibrations and settings into PPMs

Load settings (if any) into the TCM

Load readout settings and default monitoring selections

into PPRODs

Zero rates and/or other statistics for this run

Remove BUSY from all PPRODs

Running→Paused Assert BUSY on all PPRODs?

Calibration/Test: Load value(s) for next calibration

step?

Paused→Running Remove BUSY from all PPRODs?

Running→Config Assert BUSY on all PPRODs

Log rates summary and other statistics for this run to

database?

Config→Loaded Stop rate monitoring program/thread

Loaded→Initial Unlock crate/modules via Resource Manager

Table 2: Actions for PreProcessor Crate

11



Transition Actions

Initial→Loaded Read database:

– expected configuration of modules

– default FPGA versions

– dead/hot/disabled channel masks

– timing settings

– threshold settings

– readout settings

Lock crate/modules via Resource Manager?

Loaded→Config Check expected modules are actually present

Check FPGA versions: reload and reset if required

Update module status in L1Calo IS server?

Start crate monitoring program/thread/callbacks

Config→Running Load thresholds and settings into CPMs

Load settings into CMMs

Load settings (if any) into the TCM

Zero module error counts and/or other statistics for this

run

Running→Paused Calibration/Test: Load value(s) for next calibration

step?

Paused→Running None

Running→Config Log error counts and other statistics for this run to

database?

Config→Loaded Stop crate monitoring program/thread/callbacks

Loaded→Initial Unlock crate/modules via Resource Manager

Table 3: Actions for Cluster Processor Crate

12



Transition Actions

Initial→Loaded Read database:

– expected configuration of modules

– default FPGA versions

– dead/hot/disabled channel masks

– timing settings

– threshold settings

– readout settings

Lock crate/modules via Resource Manager?

Loaded→Config Check expected modules are actually present

Check FPGA versions: reload and reset if required

Update module status in L1Calo IS server?

Start crate monitoring program/thread/callbacks

Config→Running Load thresholds and settings into JEMs

Load settings into CMMs

Load settings (if any) into the TCM

Zero module error counts and/or other statistics for this

run

Running→Paused Calibration/Test: Load value(s) for next calibration

step?

Paused→Running None

Running→Config Log error counts and other statistics for this run to

database?

Config→Loaded Stop crate monitoring program/thread/callbacks

Loaded→Initial Unlock crate/modules via Resource Manager

Table 4: Actions for Jet/Energy Processor Crate

13



Transition Actions

Initial→Loaded Read database:

– expected configuration of modules

– default FPGA versions in each CPROD

– monitoring sampling settings

Lock crate/modules via Resource Manager?

Loaded→Config Check expected modules are actually present

Check FPGA versions: reload and reset if required

Configure crate BUSY module (if in this crate)

Assert BUSY on all CPRODs

Update module status in L1Calo IS server?

Start crate event monitoring program(s)

Config→Running Load settings into CPRODs

Load settings (if any) into the TCM (if present??)

Zero statistics for this run

Remove BUSY from all CPRODs

Running→Paused Assert BUSY on all CPRODs?

Paused→Running Remove BUSY from all CPRODs?

Running→Config Assert BUSY on all CPRODs

Log statistics for this run to database?

Save local monitoring histograms for this run to

database?

Config→Loaded Stop (or pause?) crate monitoring program(s)

Loaded→Initial Unlock crate/modules via Resource Manager

Table 5: Actions for ROD Crate

14



Transition Actions

Initial→Loaded Read database:

– expected configuration of modules (TTCvi, BUSY,

CORBO, etc?)

– expected configuration of PPr and ROD crates

– TTCvi settings

Lock crate/modules via Resource Manager?

Loaded→Config Check expected modules are actually present

Assert overall BUSY

Load settings into TTCvi

Send TTC broadcast to start/stop LVDS synchronisa-

tion?

Configure PPr BUSY module to enable PPRODs in PPr

crates

Configure CP/JEP BUSY modules (if located in TTC

crate) to enable CPRODs in ROD crates

Configure system BUSY module to enable the other

BUSY modules (if enabled in the configuration)

Update module status in L1Calo IS server?

Start crate monitoring program/thread/callbacks

Config→Running (Re)load settings into TTCvi?

Calibration/Test: Send TTC broadcast to start syn-

chronous playback

Remove overall BUSY

Calibration/Test: Enable local triggers

Running→Paused Calibration/Test: Disable local triggers

Paused→Running Calibration/Test: Enable local triggers

Running→Config Calibration/Test: Disable local triggers

Assert overall BUSY

Config→Loaded Stop crate monitoring program/thread/callbacks

Loaded→Initial Unlock crate/modules via Resource Manager

Table 6: Actions for TTC Crate

15



Transition Actions

Initial→Loaded Read database:

– expected configuration of modules and their daugh-

tercards

– sets of test vectors to be loaded

Locking crate/modules via Resource Manager probably

not required for test systems?

Loaded→Config Check expected modules are actually present

Load test vectors into DSS modules

Update module status in L1Calo IS server?

Start crate monitoring program/thread/callbacks (if

any)

Config→Running Load test vectors into DSS modules

NB start of playback initiated by TTC broadcast from

TTC crate

Running→Paused None

Paused→Running None

Running→Config None (stop of playback signalled by TTC broadcast?)

Config→Loaded Stop crate monitoring program/thread/callbacks (if any)

Loaded→Initial Unlock crate/modules via Resource Manager (if

locked)

Table 7: Actions for DSS Crate

16



Transition Actions

Initial→Loaded Read database:

– expected configuration of crates

– default run parameters?

Lock L1Calo system via Resource Manager?

Loaded→Config Set synchronous transition order: TTC before others

Update system status in L1Calo IS server?

Start overall monitoring program/thread/callbacks?

Config→Running Set synchronous transition order: others before TTC

Zero systemwide statistics/histograms/etc?

Calibration/Test: Start calibration sequence process?

Running→Paused None

Paused→Running None

Running→Config Set synchronous transition order: TTC before others

Save systemwide statistics/histograms/etc to database?

Config→Loaded Stop overall monitoring program/thread/callbacks?

Loaded→Initial Unlock L1Calo system via Resource Manager

Table 8: Actions for Overall Controller

17


	Introduction
	Hardware Overview

	Requirements
	Design Issues
	Run Control System Overview
	Run Types
	Actions
	Synchronisation
	Hierarchy
	Calibration
	Implementation

	IS server and IGUI
	State transition actions

