
ATLAS Level-1 Calorimeter Trigger 29 November 2003

Software Note 012 Version Draft 0.4

L1Calo Database User Guide

Murrough Landon

1 Introduction

This document describes the configuration database for the ATLAS Level 1 Calori-

meter (L1Calo) Trigger [1]. It is primarily intended as a user guide and its intended

audience is the (small!) community of L1Calo software developers.

The L1Calo database requirements and some early ideas for the database schema

are given in [2]. That document is a little out of date, but is still useful in giving an

overall picture.

Everything described in this document is an extension of the standard ATLAS

Online configuration database. This has extensive documentation which is acces-

sible via its website [3].

The Online database software is organised in two layers. The underlying OKS

layer deals with the storage of objects in physical database files. It is very generic

and flexible. Above this is the data access library (DAL) which converts generic

OKS database objects to instances of C++ runtime classes that are very specific to

the ATLAS Online software.

The L1Calo extensions are of three types. The schema of the OKS database has

been extended to include new classes and subclasses of existing classes. Secondly,

the DAL has been extended to implemented these as new C++ runtime classes.

Lastly an “integrated” database layer has been added which combines static con-

figuration data with volatile run parameters obtained from the Online software In-

formation Service (IS) and calibration and trigger menu data.

1.1 Organisation of the Document

This document is organised as follows. The next section describes how the database

and the associated libraries are divided into CMT packages, then section 3 shows

the layout of the database files.

The L1Calo extensions to the standard Online software DAL are briefly cov-

ered in section 4 and the “integrated” database layer, which is intended as the main

user interface, is described at some length in section 5.

Section 7 discusses the tools available to edit the database and lastly section 8

describes a few utility programs.

1



2 Organisation of CMT Packages

The term “L1Calo database” covers both the data files themselves, the database

schema and also data access libraries (DALs) for reading (and updating) the data.

These different aspects are implemented in a number of CMT packages.

• dbFiles: this package contains both the database schema files and the

contents of the database. The files are organised in directories following the

Online software conventions and which are described in more detail below.

The dbFiles package depends on the schema files and some data files

provided by the Online software.

• isL1Calo: this small package is used to generate C++ and Java classes for

use in the Online software Information Service (IS). The package contains

no code or data of its own. The isL1Calo package depends on the is

package from the Online software.

• infraL1Calo: this package is also used to generate C++ “wrapped enum”

classes which convert the string enumerations in the database schema to nu-

meric enumerations wrapped up as a C++ class.

• confL1Calo: this rather large package contains all the code to implement

the data access library (DAL) for the L1Calo configuration data. It also

implements DALs for our other data (eg calibration and trigger menus) and

an integrated software layer which combines all this information for each

module. The confL1Calo package depends on the oks and confdb

packages from the Online software.

2.1 The dbFiles package

The dbFiles package contains the OKS style XML files that comprise the data-

base, ie the data and its schema – at least the L1Calo specific aspects of this.

The directory layout described below follows the recommendations of the On-

line software group, with some L1Calo extensions and the CMT infrastructure.

• cmt: this has the CMT infrastructure, ie the requirements file which

installs the database files in our installation area, and the checkxml.pl

script which checks the XML files for gross syntax errors which may be

introduced by manual edits.

• schema: contains our schema files. For the moment these are split into

several files but some may be combined in future. The l1calo hw schema

file contains the L1Calo extensions of the configuration database schema,

the l1calo is schema file defines our IS variables, the calibration

schema file describes the objects in our calibration database and the triggermenu

2



schema file those forming the trigger menu. The latter two may be su-

perceded in future by the conditions database and the CTP defined integrated

trigger menu.

• calib: contains calibration data files.

• hw: standard location for data files describing the hardware configuration,

eg workstations, crates and modules. We also use this directory for data files

specifying cables and for the test vectors to be loaded into modules.

• menu: contains trigger menu data files.

• mrs: contains the MRS database for L1Calo error messages.

• partitions: standard location for data files describing top level TDAQ

partitions and the run control hierarchy. We also have a file defining envi-

ronment variables common to all our partitions. The private L1Calo naming

convention is to use Capitals for top level partition files and lower case for

files which are included by the top level files.

• sw: standard location for data files describing the software configuration,

eg programs and instances of them in processes (“applications”). Examples

include our run controllers and some test programs.

2.2 The isL1Calo package

The isL1Calo package is just used as a place holder for generated code. The

requirements file and the Makefile (modified from the CMT default one)

run the is generator.sh script from the Online software is package to gen-

erate C++ and Java classes from the l1calo is schema file.

2.3 The infraL1Calo package

The infraL1Calo package contains general infrastructure classes for the rest

of the L1Calo software. Some of these are developed by hand. Others, the so

called “wrapped enum” classes are generated by the enumgen.pl script. Some of

these wrapped enum classes encapsulate string enumerations from the l1calo hw

database schema file as numeric enumerations inside a C++ class. These are safer

than using bare strings in the rest of the code as typos can lead to runtime errors,

whereas typos in enum constants should be flagged by the compiler.

2.4 The confL1Calo package

The confL1Calo package contains all the code to create run time instances of

L1Calo specific C++ classes from the OKS objects in the database. This is done

by extending the data access library (DAL) provided by the Online software for the

standard database classes.

3



The source code is split into a number of subdirectories according to function.

All the headers are in the single standard confL1Calo directory.

• src/calib: the classes in this directory describe the calibration data to be

loaded into each module. At present the calibration objects are read from

OKS XML files. In future there may be some more sophisticated connection

to the ATLAS Conditions Database.

• src/db: this directory holds the top level “integrated” database classes.

These classes act as facade classes bringing together data from the various

databases and, to some extent, hiding their implementation. They are the

classes which other parts of the L1Calo software are expected to use directly.

• src/hw: contains the classes which implement extensions of the standard

DAL. The OKS schema for these classes is in l1calo hw.schema.xml.

In general, these classes are not expected to be used directly by other L1Calo

software. The higher level src/db classes should be used instead.

• src/qt: this directory has the source and headers for an incomplete graph-

ical trigger menu editor based on Qt. It is likely to be superceded by devel-

opments from the CTP group.

• src/runtype: this directory has classes which implement module set-

tings which depend on the run type. However this idea may be abandoned in

future.

• src/trig: has the classes which implement the trigger menu and which

are based on the triggermenu.schema.xml schema file. These classes

may be superceded by developments from the CTP group.

• src/ui: contains the Qt Designer user interface description for the graph-

ical trigger editor in src/qt.

• src/utils: this directory has some utility classes used in reading OKS

classes.

3 Database File Structure

The configuration database is physically stored in a number of OKS files. The

database library defines three main categories of objects (hardware, software and

partition) and requires them to be kept in separate files. Each TDAQ partition has

one top level “partition” data file. However this may then include any number of

schema files and other data files. This “federated” approach can be very useful in

allowing several top level partition files to share a lot of their data.

4



3.1 Workstations

Every workstation (or crate based module with a CPU) on which the Online soft-

ware runs must be identified in the database. It is convenient to have a separate

file for the workstations at each site. Partitions which are specific to the hardware

setup at a given site need only include that sites workstations. More general test

partitions can include the workstation files for all our sites so that they can be run

anywhere.

3.2 Environment Variables

Both the Online and L1Calo software need a number of environment variables set

correctly for use by processes across the distributed system. These all need to be

defined in the database. Since they are generally common to all partitions, all our

environment variables are defined in a single environment.data.xml file.

NB by setting the value of the relevant Environment object in the database

to the ${name} style shell syntax, the database value will be taken from the users

environment when the DAQ is started with the play daq script. This is useful for

keeping the database files themselves as site-independent as possible.

3.3 Crates and Modules

It is probable that we will try to have only a single top level partition file (with

many test procedures defined) for a given hardware setup. However there may be

several partitions which all use the same hardware. And in any case, the Online

database requires “hardware” objects to be kept in separate files from “partition”

objects.

At present we have one file describing the hardware setup for the CPROD tests

at RAL and another file describing a generic slice test setup.

3.4 Cables

It may be that the same hardware setup is cabled up in different ways for different

tests. In this case it may be useful to keep the cable objects separate from the crate

and module objects.

3.5 Test Vectors

A similar argument applies to the specification of test vectors. So at present we

have a separate file for each partition which lists the test vector setup for that par-

tition.

5



3.6 Run Control Tree

The run control hierarchy and run control applications are considered as part of

the “partition” class of database objects. However it can be useful to keep them

separate from the top level partition file.

3.7 Software Repository

The software class of database objects comprised the descriptions of programs (the

SW Object class) and their implementation as binary files on different operating

systems (the Program class). These objects are likely to be shared by all our

partitions so they are all kept in a single file.

4 L1Calo Extensions to the Standard Database

This section describes the main L1Calo extensions and additions to the Online

database schema and how these appear in the L1Calo extensions to the standard

DAL. The schema extensions are kept in the l1calo hw schema file.

Note that for C++ users, the standard DAL is generally hidden behind the fa-

cade of our “integrated” database layer which is described in section 5. However

this section may be useful in understanding how to edit the database which is dis-

cussed in section 7.

4.1 L1CaloPartition

The OKS L1CaloPartition is a subclass of the standard OKS Partition

class. It adds relationships to two GenericFileListobjects: calibration-

List and triggerMenuList are lists of calibration and trigger menu XML

files available for this partition. There is also a relationship dataGenRecipes to

the list of test vector descriptions (“DataGenRecipes”) and a relationship l1calo-

RunTypes to the set of run type objects defined for this partition.

In the L1Calo extension to the standard DAL this is used to create a runtime

L1CaloConfdbPartition object.

Note that having our own Partition subclass means that the TDAQ DB SCHEMA

environment variable must contain our l1calo hw schema file.

4.2 L1CaloCrate, L1CaloModule and Subclasses

The L1CaloCrate class is a subclass of the standard Crate class. L1Calo-

Crate has one extra attribute, the backplaneTypewhich is an enumeration of

the possible types of backplane in our system.

6



The DAL creates a C++ L1CaloConfdbCrate object from each L1Calo-

Crate OKS object. The backplane type is implemented in a wrapped enum class

BackplaneType generated by the infraL1Calo package.

The L1CaloModule class is an abstract OKS subclass of Module. which

is only used as the common base class of OKS subclasses for each of our mod-

ules. It has an additional attribute ttcAddress to specify the TTCrx address

of modules which dont have geographical addressing. There is also a relationship

fpgaConfiguration providing a link to the set of FpgaPrograms for this

module. At the time of writing the schema contains non-trivial subclasses Cmm,

Cpm, CpRod, Dss, Jem, Ppm and Ttvci. Classes for other modules can be

added in future, but modules with no extra attributes can just be left as L1Calo-

Module objects.

In the L1Calo DAL these are used to create runtime L1CaloConfdbCmm etc

C++ objects. Modules with no special OKS class of their own become L1Calo-

ConfdbModuleC++ objects.

4.3 DataGenRecipe, GenericFile and GenericFileList

GenericFile is just a filename. Unlike the standard DataFile it is not ex-

pected to be an XML file. GenericFileList contains a list of GenericFile

objects which may all live in a default directory. DataGenRecipe is a subclass

of GenericFile specifically to describe a test vector file. Apart from the file-

name, it has a data type and a flag identifying it as either an input file (source) or

an output file (sink).

4.4 CableConnection and CableBundle

CableConnection objects link two (or more) modules which are identified by

the srcModule and dstModule relationships. The connectors on each module

are specified by the srcConnector and dstConnector attributes. There are

a number of CableConnection subclasses for each type of cable and for each

one, the appropriate connector names for both ends are enumerated In the DAL

they all become CableConnectionC++ objects (no L1Calo or Confdb pre-

fix for a change!).

A CableBundle object in OKS describes a set of cables between the same

two modules. The only subclasses are for LVDS cable bundles between PPMs and

either CPMs or JEMs. In the DAL single CableBundle objects are converted to

sets of CableBundle objects.

5 Using the Database in C++

This section describes how to use the database from C++ code.

7



L1Calo

Integrated

Database

Online Sw

Configuration

Database

IS Run

Parameters

Calibration

Database

Trigger Menu

L1Calo Static

Configuration

Database

Figure 1: The L1Calo “integrated” database brings together a number of other

databases.

5.1 Initialisation of the Database

The L1Calo database empire consists of several parts: the integrated database layer

which brings together the extended standard DAL and the separate DALs for the

calibration data and the trigger menu. Additionally the integrated database allows

some parameters from the standard (static configuration) DAL to be overridden by

run parameters taken from the Online software Information Service (IS). Figure

1 shows the general idea. All the component databases (apart from the IS run

parameters) use the same “transient” initialisation scheme as that of the standard

Online configuration database DAL.

Each DAL has one top level class which is responsible for reading the OKS

database files and creating the runtime C++ objects. For the standard Online DAL,

this class is called ConfdbConfiguration. For the L1Calo extension of the

standard DAL, the equivalent class is L1CaloConfdbConfiguration, and

for the L1Calo integrated database layer, the class is L1CaloDatabase.

The initialisation process proceeds roughly as follows. The user creates an

instance of the relevant top level class and (typically) passes a list of OKS schema

and data files. These are read by an OksKernel object which creates the transient

OKS C++ objects.

The OKS C++ objects are very generic. The schema is used to create a set of

OksClass objects, one for each class. The data files are used to create OksObject

objects, one for each object in the XML files. OksClass objects can have OksAt-

tribute and OksRelationship objects describing their attributes and relationships.

OkjObject objects have OksData objects which contain the values of the attributes

and relationships for that instance of the OksClass.

These very generic OKS objects are rather cumbersome to use directly in other

C++ code. So they are only used to initialise the customised C++ classes which

8



comprise the DAL. The DAL typically contains a different C++ class for every

OKS class (or sometimes just each OKS base class) in the database schema.

Once the top level DAL class has created all the runtime C++ objects from the

OksObject objects, the OksKernel is deleted and consequently all the OksClass,

OksObject, etc objects are also deleted. This is why they are referred to as “tran-

sient”.

Note that the top level DAL object owns all the other runtime C++ database

objects. If the instance of the top level DAL class goes out of scope or is deleted,

the whole database is deleted.

5.2 Integrated Database

The integrated L1Calo database is initialised and provided by a class called, unsur-

prisingly, L1CaloDatabase. The class has a number of constructors, including

a default constructor which is probably what you should normally use. The de-

fault constructor takes the list of OKS schema and data files from the environment

variables TDAQ DB SCHEMA and TDAQ DB DATA respectively.

The following code is thus normally sufficient to create the database and load

the static configuration data:

#include "confL1Calo/L1CaloDatabase.h"

// Create L1Calo database and read static data.

L1CaloDatabase db();

Remember that all the database objects you subsequently obtain from the data-

base will be deleted if the L1CaloDatabase object is deleted. The run con-

troller, for example, creates the database at the Load transition and keeps it until

the Unload transition.

The L1CaloDatabase class has a number of methods which are described

in the reference documentation (see section 5.5).

A simplified schema of the integrated L1Calo database is shown in figure 2.

5.2.1 Linking Other Databases

The above example code only loads the static configuration data using our extended

version of the Online configuration DAL. But the main purpose of the integrated

database layer is to provide a fairly seamless interface to other data for our modules.

This data will only be available if you make it available and tell the L1Calo-

Database about it.

To make the volatile run parameter data stored in IS available to the L1Calo-

Database, you need to tell it the name of the IS server and also pass the current

IPC partition:

9



L1CaloDatabase

DbCrate
DbConnection

DbModule

DbCpm

...and other

subclasses

Figure 2: Simplified schema of the L1Calo integrated database.

// Read run parameters from IS.

std::string partitionName = "RalTest"; // for example

std::string isServerName = "RunParams.L1Calo";

IPCPartition ipcPartition(partitionName);

db.readIsParameters(ipcPartition,isServerName);

The run controller, for example, calls readIsParameters() at the start of

each state transition action.

You may also want to provide your modules with trigger menu and calibration

data. These are kept in separate OKS files which need to be read in via their own

DALs (see section 5.4). The top level objects from those DALs can then be passed

to the L1CaloDatabase.

#include "confL1Calo/L1CaloCalibration.h"

// Read calibration data giving schema and data files.

// NB you can just call db.setDefaultCalibration()

std::string calibSchema =

"${L1CALO_DB_PATH}/schema/calibration.schema.xml";

std::string calibData =

"${L1CALO_DB_PATH}/calib/myCalibration.data.xml";

L1CaloCalibration calib(calibSchema,calibData);

db.setCalibration(calib);

// Read trigger menu. Schema and data file names may

// be given, but defaults can also be taken as below.

db.setDefaultTriggerMenu();

10



5.2.2 Finding Crates and Modules

The Online configuration database allows to you to find any crate or module in

the system. In constrast, the L1CaloDatabase expects to find a Detector

called L1Calo and will only show you the crates and modules which belong to

the L1Calo detector. The crates can be found via the getCrates() method.

This returns two iterators (passed to the method by reference) which you can use

to iterate over all L1Calo crates. You can also ask for a particular crate by name

using the getCrate()method.

In a similar way, given a DbCrate, you can ask it for iterators over its collec-

tion of modules or for a particular named module. L1CaloDatabase also has a

short cut method to find a particular named module in any L1Calo crate.

The crate and module classes have a number of methods to return their at-

tributes. These mostly just return the attribute from the underlying static con-

figuration database DAL. However for some attributes, the value can be taken

instead from an IS run parameter variable for that module – provided that the

readIsParameters() method has been called and the IS server is running

and has the appropriate variable.

5.2.3 Finding Connections

You can find out about cable connections in two ways. The top level L1Calo-

Database provides a method getConnections()which returns iterators over

all cable connections in the database. Each connection is described by a DbCon-

nection object. This in turn has methods to return DbModConn objects, which

hold the DbModule and its connector, for the source and destination ends of the

cable.

L1CaloDatabase db();

L1CaloDatabase::ConnsMap::const_iterator ix;

L1CaloDatabase::ConnsMap::const_iterator ixend;

// Find all connections.

db.getConnections(ix, ixend);

for (; ix != ixend; ix++) {

const DbConnection* cable = ix->second;

// Get source module and its connector.

const DbModConn* mc = cable->getSrcConn();

const DbModule* m = mc->getModule();

const L1CaloConnector& c = mc->getConnector();

// etc...

}

Alternatively, if you already have a DbModule object, you can use its get-

Connections()method which also returns iterators over all the cable connec-

11



tions to that module. You can also use the getConnection()method to return

the DbConnection (if any) for a given named connector.

DbModule* m; // Obtained earlier...

L1CaloConnector c("Glink0");

const DbConnection* cable = m->getConnection(c);

If you just want to find the identity of the module at the other end of the cable,

you can use the getConnectedId() method for a named connector. This re-

turns a DbModCrateId object that holds the logical (numeric) identifiers of the

connected module and its crate.

DbModule* m; // Obtained earlier...

L1CaloConnector c("Glink0");

const DbModConn* mc = m->getConnectedId(c);

if (mc != 0) {

unsigned int moduleId = mc->getModuleId();

unsigned int crateId = mc->getCrateId();

}

5.2.4 Finding Test Vectors

The input test vector and the simulated test output files are held in instances of the

(misnamed) DataGenRecipe class which is part of the infraL1Calo pack-

age. Given a DbModule, you can find its input test vector (ie its data Source) or

the simulated output (ie its data Sink) via the getDataGenRecipe()method

and requesting the appropriate L1IOType.

DbModule* m; // Obtained earlier...

L1IOType src = L1IOType::Source;

const DataGenRecipe* dg = m->getDataGenRecipe(src);

if (dg != 0) {

// Then use the DataGenRecipe to create a test

// vector reader via the TVReaderFactory class...

}

5.2.5 Finding Calibration Data

Provided that the top level L1CaloDatabase object has been passed a top level

L1CaloCalibration object, you can obtain the calibration data for a particu-

lar module type, and hence its submodules (if any) via the getCalibration()

method of the appropriate DbModule subclass. NB this method is only imple-

mented in the subclasses.

From the module calibration object, eg CpmCalibration, you can get the

TtcrxSettings and the other settings objects for the CPM submodules.

12



DbCpm
L1Calo-

Calibration
CpmCalibration

CpmReadout

-Settings

TtcrxSettings

Serialiser-

Settings

Figure 3: Schema of the CPM calibration. The schema for other modules is similar,

though the PPM is more complicated.

DbCpm* m; // Obtained earlier...

const CpmCalibration* calib = m->getCalibration();

if (calib != 0) {

// Get a TTCrx setting.

int ttcPhase1 = calib->getTtcrxSettings()->getPhase1();

// Get a readout setting.

int daqOffset = calib->getReadoutSettings()->getDaqOffset();

// Get a setting for each serialiser.

for (int = 0; i < CpmDefs::numSerialisers(); i++) {

int delay = calib->getSerialiserSettings(i)->getDelay();

}

}

Note: it is important to check that a valid CpmCalibration object is re-

turned. This will be zero if no L1CaloCalibrationwas passed to the L1Calo-

Database.

The CPM calibration schema is shown in figure 3.

The JEM and CMM calibration objects are similar to that of the CPM, though

the CMM one is rather simpler. Calibration objects for the PPM have not yet been

implemented.

5.2.6 Finding Trigger Menu Data

As with calibration data, the trigger menu data for a given module is also obtained

via the appropriate DbModule subclass. This also requires that the L1Calo-

Database object has already been given a LVL1TriggerMenu object contain-

ing the whole of the trigger menu.

13



DbCpm
LVL1Trigger-

Configuration

LVL1Trigger-

Menu

LVL1Cluster-

Threshold
LVL1Cluster-

ThreshValue

16..16

1..*

Although DbCpm holds the

LVL1TriggerMenu, it returns

LVL1ClusterThresholds

Figure 4: Schema of the trigger menu for the CPM. The schema for the JEM is

similar, but with jet, forward jet and the global energy thresholds.

The DbCpm class returns a LVL1ClusterThresholdobject for each thresh-

old and actual threshold values for each CpChip (which may in principle be dif-

ferent) can be obtained from that. The structure of the trigger menu objects is

described in a bit more detail in section sec:triggermenudal.

DbModule* m; // Obtained earlier...

const LVL1ClusterThreshold* thresh;

int n = LVL1TriggerMenuDefs::NumClusterThresholds;

for (int i = 0; i < n; i++) {

thresh = m->getClusterThreshold(i);

if (thresh != 0) {

// Get actual values for a given CpChip

// using its (phi,eta) coordinate.

// But for the moment, just use (0,0).

unsigned int cluster = thresh->clusterThreshold(0,0);

unsigned int emIsol = thresh->emIsolThreshold(0,0);

unsigned int hadIsol = thresh->hadIsolThreshold(0,0);

unsigned int hadVeto = thresh->hadVetoThreshold(0,0);

}

}

Note: it is important to check that a valid LVL1ClusterThreshold object

is returned. This will be zero if no trigger menu was passed to the L1CaloData-

base.

The trigger menu schema, as seen by the CPM, is shown in figure 4.

5.3 L1Calo Static Configuration Database

Users of the L1Calo database software should, in general, not have to use the

classes which form our extension to the standard DAL. In principle everything

14



in this DAL is made available via the integrated database layer (section 5.2). So

the descriptions here will be brief.

The Online configuration database DAL is intended to make a fairly automatic

conversion of OKS objects to C++ runtime objects. It is not completely straight

forward as it provides some extra algorithms for specific use cases. There are also

some cases where unidirectional relationships in the OKS database are reversed in

the DAL.

The Online confdb package provides a number of classes which all start with

the Confdb prefix. The whole database is read in via the ConfdbConfiguration

class.

The L1Calo extensions (almost?) all start with the rather verbose L1Calo-

Confdb prefix. In most cases these classes have identical attributes to the OKS

classes and make them all available via getXXX()methods.

About the only exception is in the handling of the cable connections which

are rather complicated. I hope to change this in future (in fact they may be taken

on by the Online group and implemented in the standard DAL) so I wont bother

describing it all here.

5.4 Calibration and Trigger Menu DALs

At the moment, calibration data and the trigger menu are both read from OKS

files. In both cases the data is read separately from the configuration data, so that

different calibrations and trigger menus can be used in successive runs with the

same configuration.

The calibration data and trigger menu each has a little DAL of its own. They

both follow the same principle as the configuration database DAL. Transient OKS

objects are read from the data files and used to initialise C++ classes.

The two DALs each have a top level class, equivalent to the L1CaloCalib-

ration or L1CaloConfdbPartition class in the other DALs. In the trig-

ger menu DAL this is LVL1TriggerConfiguration, and in the calibration

DAL it is L1CaloCalibration. Both of these classes can be constructed ei-

ther directly by specifying an OKS schema and data file, or by passing an existing

Confdb object.

The trigger menu is expected to be contained in a single OKS file. However

the calibration data is implemented in a similar way to that of the configuration

database in that there is a top level file containing a Partition object which can

specify other files to be included. This scheme allows different types of calibration

data, eg energy, timing, BCID, which may change on different timescales, to be

stored in separate files. However the final system will probably actually obtain

data from the ATLAS Conditions Database, so this OKS based scheme may not be

used.

15



In principle the federated scheme for the calibration data should allow data

files to handle a single crate or a collection of crates. However this has not yet

been tested.

5.4.1 Trigger Menu

To read in the trigger menu, you need to create an instance of the DALs top level

class, LVL1TriggerConfiguration. From this object you can get the trig-

ger menu itself. This is a single object of type LVL1TriggerMenu. The trigger

menu object can then be queried to find the 16 LVL1ClusterThreshold ob-

jects. There is one of these for each threshold. They cover the whole eta-phi space,

however different eta-phi subspaces may require different values of the various

thresholds. The actual threshold values for a specific (phi,eta) coordinate is held in

a LVL1ClusterThreshValue object.

Similar classes exist for the jet and global energy thresholds.

Further details are in the reference documentation (see section 5.5) and look at

section 5.2.6 for some examples.

5.4.2 Calibration Data

Calibration data is read in and run time calibration objects are created by the

L1CaloCalibration class. Once you have created an instance of L1Calo-

Calibration, you can query it to obtain the module calibration object for a

named module.

Further details are in the reference documentation (see section 5.5) and look at

section 5.2.5 for some examples.

5.5 Reference Documentation

Fairly complete reference documentation on the API of all classes in the confL1Calo

package is generated using Doxygen every night as part of the nightly build.

All the Db-prefixed classes have at least a brief description for every method.

The underlying L1CaloConfdb-prefixed classes have descriptions for important

methods, but some methods are inlined in the header files without special Doxygen

style comments.

The reference documentation is available at

http://www.hep.ph.qmul.ac.uk/l1calo/dox/confL1Calo/html

6 Using the Database in Java

The DAL described in section 5 is only available in C++. In future the configura-

tion database package may provide tools to generate low level DALs automatically

16

http://www.hep.ph.qmul.ac.uk/l1calo/dox/confL1Calo/html


from the schema in both C++ and Java. Until then, the database can only be ac-

cessed in Java via the remote database server (RDB and RDBplus). The method of

doing this is rather laborious and is poorly documented by the Online group.

This section of the present document may be expanded in future. In the mean

time, if you are really interested, you can look at the classes L1CaloModPars,

L1CaloRunPars and RdbUtilities in the L1Calo iguiL1Calo package.

7 Editing the Database

The Online software provides a number of tools for editing the database. The

most convenient and graphical one is extendable and has been extended to display

L1Calo specific subclasses of the standard classes and also to handle entirely new

L1Calo classes.

7.1 Graphical Database Editor

7.1.1 Invoking the Editor

The graphical database editor provided by the Online software is called confdb gui.

It can be used directly, but it will normally be more convenient to invoke it via our

edconfwrapper script. The main reason for this is that our top level partition files

use other data files which are expected to be found in the ${L1CALO DB PATH}
tree. This normally points to the read-only installation area. In order to edit the

writeable files in the dbFiles package area, the L1CALO DB PATH environment

variable needs to be reset to point there. This is done by the edconf script.

To invoke the editor via edconf you need to specify the top level partition file

to be edited. Any files this uses will be opened automatically. Assuming you are

working within the dbFiles package you need to do:

cd partitions

edconf -p MyPartition.data.xml&

Note that this file must already exist. To create a new partition, copy and re-

name an existing file.

7.1.2 Usage Summary

The Online confdb package user guide [4] describes how to use confdb gui.

Only the L1Calo extensions will be described in any detail here. But first, here is a

very brief summary of how to use the editor.

At startup, the editor displays two windows. One shows the set of schema and

data files which have been opened, the other shows error messages.

17



To edit the database, use the Editmenu and open one of the editing windows.

The Partitions window shows the top level structure. The Hardware win-

dow is used to edit crates, modules and also the L1Calo “hardware” additions such

as cables. The Software Repository window can be used to add new pro-

grams. The Run Control window is used to set up the run control hierarchy,

but confusingly some aspects are also shown in the Partitionswindow which

must also be used to add the run control applications to the partition object.

The Test Vectors window is an L1Calo addition for describing the test

vector input and output files.

Before adding new objects (via the right mouse button popup menu) you have

to select an existing database file (or create a new file) using the menu at the bottom

of each window.

Remember that the editor uses the right mouse button a lot. Most editing is

done via popup contextual menus accessed via the right button. The middle mouse

button is used to make links between objects. Press the middle button over an object

and drag it to another object to establist the relationship. Choose the appropriate

relationship from the popup menu.

7.1.3 L1Calo Extensions

When creating a new partition (in the Partitions window), be sure to select

L1CaloPartition from the menu. This allows the partition to have links to

lists of test vector and trigger menu files.

The menus in the Hardware window for creating crates and modules also

contain options for creating L1CaloCrates and subclasses of L1CaloModule

for each of our module types.

The L1CaloCrate class has an additional attribute to set the backplane type.

This is necessary for the cluster and jet/energy processor crates so that the DAL can

set up VME addresses automatically using the geographical addressing algorithm.

This also requires that each module has its slot attribute set correctly.

7.1.4 L1Calo Additions

In addition to subclasses of standard Online configuration database classes, there

are also some entirely new L1Calo specific classes. These are easily spotted by

their very mundane black and white icons.

In the Hardwarewindow, you can create CableConnectionand Cable-

Bundle objects each of which can be of several different subclasses.

A CableConnection object typically describes a single cable between spe-

cific connectors on two modules. Actually it can be used to describe so called

“octopus” cables with multiple ends as well, though this feature has not been prop-

erly tested.

18



To do this, create a CableConnection and give it a name which reflects

the two modules it connects. Link it with its source and destination modules by

dragging the module objects onto the cable object and selecting the appropriate

relationship. Set both the srcConnector and dstConnector attributes to the

appropriate connectors on each module.

A CableBundle object may be used to describe a set of cables between

the same two modules. This is only used for LVDS cables from PPMs to CPMs

or JEMs. The CableBundle is only provided for convenience of editing the

database. At run time each CableBundle is converted to groups of Cable-

Connection objects.

The Test Vectors window can be used to add DataGenRecipe and

GenericFileList objects containing the available trigger menus and calibra-

tion files. However this window (like the other windows) will, by default, only

show objects which are not used by other objects (depending on the display option

chosen via the right mouse button menu). If the objects are already linked, you can

see them via the relationships of the module or partition objects.

Once you have created a DataGenRecipe, you can link it with its relevant

module(s) by dragging the module to the DataGenRecipe object using the mid-

dle button. NB you also need to link each DataGenRecipe to the L1Calo-

Partition.

You can build up GenericFileLists by creating GenericFiles and

dragging them to the GenericFileList you created earlier. The Generic-

FileList of either calibrations or trigger menus can then be linked to the L1Calo-

Partition.

7.2 OKS Data Editor

An alternative way to edit the data files is to use the basic OKS data editor. This is

a generic editor which, unlike the confdb gui, has no knowledge of the ATLAS

database schema. The user of the tool has to know the schema. It is not extendable,

so the complete description can be found in the confdb user guide [4].

7.3 OKS Schema Editor

This is the only tool for editing the schema files (apart from editing the XML files

by hand). Like the OKS Data Editor, it is a generic editor and has no knowledge

of the ATLAS database schema. Refer to the confdb user guide [4] for further

details.

A graphical schema editor is promised for a future Online software release but

is not available yet.

19



7.4 Editing XML By Hand

Although the graphical editor is normally the most convenient and safest method

for editing the databases, it can sometimes be useful to edit the XML files by hand.

For example if you need to add many instances of a particular class it can be quicker

to do the first one using confdb gui to establish the correct syntax and then add

the rest by cutting and pasting with a text editor.

The drawback of this approach is that it is easy to introduce syntax errors into

the XML file. Since XML parsers are expected to be very unforgiving of errors,

this can render the file unusable and unreadable by the standard tools so that you

can not use them to correct errors you have introduced.

To ameliorate this problem, the dbFiles package includes a checkxml.pl

script to perform checks for the most common errors introduced by manual editing.

It will point out what you have to fix.

7.5 Naming Conventions

Each object of the same class in the database must have a unique ID. Eg the CPMs

in slot 6 of crates 1 and 2 must have different IDs. So it is necessary to use a hier-

archical set of prefixes, adding the crate name to the module name, and appending

submodule names if appropriate. See also the discussion in [2].

8 Database Utilities

The confL1Calo package provides a number of utilities – in addition to those

provided by the Online software confdb package. They are all described briefly

here.

All the command line parameters should be listed here someday. Until that

happy time, you can find them by giving -h or --help on the command line to

each program.

8.1 calib dump

This provides a simple dump of a named calibration database or (by default) the

one referred to by the L1CaloDatabase.

8.2 confdb evolve

This program just reads and rewrites all the OKS files named on its command. This

has the (desired) side effect of bringing the files up to date with any changes in the

schema.

20



It is most convenient to run this program via the confdb evolve.pl script

which will keep all the objects in the file in the same order and reports which files

have changed and need committing back to CVS.

8.3 confdb setdata

A utility program to set a specified attribute of all instances of a particular class to

a given value or to show its present value. It may be useful in filling calibration

databases.

8.4 initcalib

This program creates or updates a calibration database. It ensures there are cal-

ibration objects appropriate for the crates and modules found in the default con-

figuration database (ie TDAQ DB DATA). Any existing calibration objects will be

kept and new objects created where necessary, eg if new modules were added to

the configuration. Note that all the attributes of new objects are set to zero (or

whatever the default initial value specified in the schema is).

8.5 l1calo confdb dump

This is an extended version of standard confdb dump which also dumps new

L1Calo classes and extra attributes of standard classes.

8.6 l1calo db dump

A utility to dump the integrated L1CaloDatabase including where static configura-

tion data may be overridden by IS variables. At present it only handles crates and

modules.

8.7 trigedit

This is a graphical trigger menu editor implemented with Qt. This program is

incomplete and hence not very useful. It will probably be removed when the CTP

group provide a proper trigger editor tool.

9 Examples

There are a number of examples scattered through the document, mostly in section

5. Should there be more?

For the moment though, you will have to look through existing code if the

above examples are not enough. A good place to start is the DbSim package,

especially DbSimulation. Also various of the module services packages.

21



10 To Do...

Things to do for this document (and related documents):

• Update the database design document [2], especially its diagrams.

• Incorporate some of its diagrams into this document?

• Create some (more) new diagrams for this document as well?

• Pictures illustrating use of the confdb gui.

• More examples?

• More details of the utility programs?

References

[1] ATLAS Level 1 Calorimeter Trigger: home page

http://hepwww.pp.rl.ac.uk/Atlas-L1

[2] Configuration Database

http://www.hep.ph.qmul.ac.uk/l1calo/doc/pdf/ConfigDatabase.pdf

[3] ATLAS Online Software Configuration Databases

http://atddoc.cern.ch/Atlas/DaqSoft/components/configdb

[4] Configuration Databases User Guide

http://atddoc.cern.ch/Atlas/Notes/135/Note135.pdf

22

http://hepwww.pp.rl.ac.uk/Atlas-L1
http://www.hep.ph.qmul.ac.uk/l1calo/doc/pdf/ConfigDatabase.pdf
http://atddoc.cern.ch/Atlas/DaqSoft/components/configdb
http://atddoc.cern.ch/Atlas/Notes/135/Note135.pdf

	Introduction
	Organisation of the Document

	Organisation of CMT Packages
	The dbFiles package
	The isL1Calo package
	The infraL1Calo package
	The confL1Calo package

	Database File Structure
	Workstations
	Environment Variables
	Crates and Modules
	Cables
	Test Vectors
	Run Control Tree
	Software Repository

	L1Calo Extensions to the Standard Database
	L1CaloPartition
	L1CaloCrate, L1CaloModule and Subclasses
	DataGenRecipe, GenericFile and GenericFileList
	CableConnection and CableBundle

	Using the Database in C++
	Initialisation of the Database
	Integrated Database
	Linking Other Databases
	Finding Crates and Modules
	Finding Connections
	Finding Test Vectors
	Finding Calibration Data
	Finding Trigger Menu Data

	L1Calo Static Configuration Database
	Calibration and Trigger Menu DALs
	Trigger Menu
	Calibration Data

	Reference Documentation

	Using the Database in Java
	Editing the Database
	Graphical Database Editor
	Invoking the Editor
	Usage Summary
	L1Calo Extensions
	L1Calo Additions

	OKS Data Editor
	OKS Schema Editor
	Editing XML By Hand
	Naming Conventions

	Database Utilities
	calib_dump
	confdb_evolve
	confdb_setdata
	initcalib
	l1calo_confdb_dump
	l1calo_db_dump
	trigedit

	Examples
	To Do...

