
ATLAS Level-1 Calorimeter Trigger 8 December 2001

Software Note 005 Version Draft 0.2a

Configuration Database
Murrough Landon

1 Introduction

This document discusses the classes we need in the database schema to implement

our configuration, calibration and trigger menu data.

The list of all the parameters required to configure the level 1 calorimeter

trigger [1] has been already described in [2]. In this document we propose an

object model to implement this. We also define the requirements of the data access

libraries we will use to interface the database to higher levels of software.

1.1 Categories of Data

The data we need to describe and configure the trigger falls into a few different

categories which are distinguished by the nature of the data and how it changes

with time. The main categories are summarised here and discussed in more de-

tailed in subsequent sections.

• Hardware and Software Configuration: this category of data is concerned

with the description of the hardware setup and its interconnections; also

with the collection of programs used to configure and monitor the system.

The database schema is largely that provided as part of the Online Soft-

ware Configuration Databases [3] component – with some extensions to the

hardware schema specific to the calorimeter trigger. The software schema

requires little or no change.

• Trigger Menu: this describes the physics choices, ie trigger thresholds and

algorithms, to be used for a particular run. There may be many trigger

menus prepared offline and distributed to the trigger systems. Of these, one

will be selected at run time.

• Calibration Data: this includes the energy calibration, timing calibration of

the input signals and their pulse shapes, also internal timing of links between

the processor subsystems, readout pipeline latencies etc. These data will be

derived from a number of different calibration procedures which may be

run regularly or occasionally. All calibrations will be stored in the offline

database, but at run time only the latest one is ever used.

1



• Run Parameters: there may be some operational parameters for which

the default values (taken from the above databases) can be overridden at

run time. For example, the amount of readout data may be temporarily

increased for detailed monitoring, etc.

2 Requirements and Use Cases

The design of the database schema, the organisation of the database into separate

files and the implementation of the data access libraries (DALs) have to satisfy

the following use cases:

• load the whole system during the standard run control state sequence from

“initial” to “running”.

• load a partial system, eg a subset of the crates or crates with a subset of

modules.

• stop a run and a start a new one loading a newly selected trigger menu and

using any new calibrations which may have appeared (ie these operations

must be completely handled just at the transition between “configured” and

“running”).

• take a calibration run and produce new calibration files.

• view/edit the calibration database.

• create test calibration databases, eg with all channels set to the same value.

• store/retrieve calibration data in/from the offline conditions database.

• change the trigger menu or produce a new trigger menu offline and distribute

it to the processor system.

3 Data Access Libraries

It is expected that the online databases will typically be kept in OKS files. The

OKS database includes both the schema and the data, however the OKS classes

and objects are instances of generic OksClass and OksObject objects which hold

descriptions of the classes and their instantiations.

To have the OKS schema and data available in a corresponding set of C++

classes and objects, we need to implement a data access library (DAL). This would

provide a much more convenient access to the database.

2



The other advantage of using a DAL rather than accessing OKS classes di-

rectly is that the same API can be presented to higher levels of software if the

underlying persistent database manager (ie OKS) is changed in the future. The

same API can also be used offline where the data may be accessed from the of-

fline “Conditions Database”, or in the case of the trigger menu, even from an

ATHENA “jobOptions” file.

In the Online software, the configuration database DALs provide read only

access to the data. This may be fine also for the trigger menu, but for calibration

data it may be more convenient for the calibration programs if the corresponding

DAL can also create the OKS objects.

The important point is that all our other software sees the database as a col-

lection of instances of a stable set of run time classes. The details of how these

run time objects are read and saved to persistent form should be hidden from the

rest of the system. This also applies to mechanisms whereby online databases are

archived and retrieved to and from the offline database.

4 Database Organisation

The calorimeter trigger comprises three subsystems each of which is implemented

in a number of VME crates. Each crate will have its own CPU and the whole

system will be controlled by a small number of workstations (eg Linux PCs).

For the hardware and software configuration, we will follow the proposals

of the Online software group. One or more OKS files will contain the hardware

description: perhaps one file per subsystem and one file for common items such as

worstations. A separate file will contain descriptions of the software. Other files

will describe the DAQ partition(s) which draw together the required hardware and

software setup.

The calibration data makes up the largest data volume. It is proposed that

this is split into separate files for each crate and for each major type of calibration.

Separation by crate means that each crate CPU only needs to load the data pertain-

ing to its crate. Separate by type of calibration makes sense because the different

calibrations will be run with different frequencies: some every day, others weekly,

monthly, or yearly. It is possible that OKS will not be the best system for storing

large amounts of data. If so, some other scheme can be used provided that the run

time view remains the same.

The trigger menu is generated offline and will need to be distributed to the

processor crates by some mechanism. This may be by copying OKS files, or

possibly some dynamic database access will be implemented. If the trigger menu

3



is implemented in OKS, we expect a single file per trigger menu – at least for

those parts relevant to the level 1 calorimeter trigger.

Run parameters will typically only be set and accessed via the Online software

Information Service component. However the complete set of level 1 calorimeter

trigger run parameters may be backed up to a single OKS file.

5 Hardware Configuration

The Online software configuration databases provide a “core” schema describing

the basic infrastructure of crates and modules, etc. It will (probably) be useful for

us to extend this be defining our own Crate and Module subclasses.

Examples of additional attributes we might need to add to the default classes

include:

• links to calibration data for each object: ie connection between the hardware

schema and the calibration data schema.

• geographical addressing of our crates (eg in the PreProcessor and ROD

crates where this is not completely determined from the backplane).

• mapping from the electronics to the detectors and/or (phi,eta) coordinates.

• concept of FPGA programs: ie add firmware to the software schema.

• default values of run parameters?

5.1 Naming Conventions

In OKS, and other OO databases, objects must have a unique identifier. In OKS

this identifier is a string. We will need a convention for naming each object (of

the same class) uniquely. In particular, modules in the same slot in different crates

need different identifiers. So a scheme which combines crate and module identi-

fiers is required.

Although we have a proposed labelling scheme [4], this is not particularly

suitable for crates. So for the purposes of the database, the following is suggested

instead.

Crate identifiers could use the two or three character subsystem string, with

a single digit suffix for the crate number within the subsystem. Eg pp0 to pp7,

cp0 to cp3, jep0 to jep1, rod0 for the ROD crate(s) and ttc for the TTC

crate.

4



Module identifiers could then be of the form ccc-mmmnn, where ccc is the

above crate identifier, mmm is the standard three character module number (maybe

using cprod and pprod instead of crd and prd?) and nn is the logical num-

ber of that kind of module within the crate. Examples might be pp2-ppm11,

pp3-pprod1, cp0-cpm5, jep1-jem15, cp3-cmm1, pp5-tcm, rod0-cprod4.

Although these are rather long, some modules appear in more than one subsystem,

so either the full subsystem name must appear, or the crates must be numbered eg

tt 0-14 across subsystems which is not very memorable.

If subcomponents of modules are eventually entered into the configuration

database (ie as opposed to HDMC parts files) then the above convention will need

extending, presumably adding -sssnn for subcomponent type (sss) and num-

ber (nn).

6 Calibration

The overall schema for the calibration data is shown in figure 6. The major part

of the calibration data is required in the preprocessor system. A more detailed

schema for that is given in figure 6.

6.1 Overview

One CalibConfiguration object is the access point for all the calibration

data in the crate. In the DAL this is the only object which uses OKS. It is re-

sponsible for creating all the other objects. This is the only class which would

need replacing in the offline environment – all the other classes could remain un-

changed.

There is one XxxSettings object for each module. This can be linked to

the equivalent module object in the hardware configuration database. In OKS it

would make sense for them to share the same unique ID (this only has to be unique

within one class [check!]).

The settings object for each module then contains a number of objects with the

data to be loaded into each distinct device on the module. It is expected that the

software will implement hardware access to each device in separate objects of an

appropriate class, so this division of calibration data into one chunk per device is

probably the most appropriate – rather than an object per channel or per module.

However the PPrAsic needs to be downloaded with several different calibra-

tions per channel, so here there is some further subdivision.

5



C
a
li
b
C
o
n
fi
g
u
ra
ti
o
n

C
p
m
S
e
tt
in
g
s

-
r
e
a
d
o
u
t
P
t
r
:
 
i
n
t

T
T
C
rx
S
e
tt
in
g
s

-
c
l
k
D
e
s
1
D
e
l
a
y
:
 
i
n
t

-
c
l
k
D
e
s
2
D
e
l
a
y
:
 
i
n
t

-
c
o
a
r
s
e
D
e
l
a
y
:
 
i
n
t

-
c
o
n
t
r
o
l
B
i
t
s
:
 
i
n
t

S
e
ri
a
li
s
e
rS

e
tt
in
g
s

-
p
h
a
s
e
:
 
v
e
c
t
o
r
<
i
n
t
>

-
d
e
l
a
y
:
 
v
e
c
t
o
r
<
i
n
t
>

C
p
C
h
ip
S
e
tt
in
g
s

-
p
h
a
s
e
:
 
v
e
c
t
o
r
<
i
n
t
>

2
0
.
.
2
0

8
.
.
8

J
e
m
S
e
tt
in
g
s

-
r
e
a
d
o
u
t
P
t
r
:
 
i
n
t

In
p
u
tS
e
tt
in
g
s

-
p
h
a
s
e
:
 
v
e
c
t
o
r
<
i
n
t
>

-
d
e
l
a
y
:
 
v
e
c
t
o
r
<
i
n
t
>

1
1
.
.
1
1

P
p
m
S
e
tt
in
g
s

-
r
e
a
d
o
u
t
P
t
r
:
 
i
n
t

C
m
m
S
e
tt
in
g
s

-
r
e
a
d
o
u
t
P
t
r
:
 
i
n
t

-
d
e
l
a
y
:
 
v
e
c
t
o
r
<
i
n
t
>

D
a
ta
F
il
e

T
o
p
 
l
e
v
e
l
 
o
b
j
e
c
t
s
 
i
n

a
 
s
i
n
g
l
e
 
O
K
S
 
f
i
l
e
.
 
O
t
h
e
r

o
b
j
e
c
t
s
 
i
n
 
s
e
p
a
r
a
t
e
 
f
i
l
e
s
.

Overall calibration database schema. PpmSettings is shown in more detail in 6

6



P
p
m
S
e
tt
in
g
s

-
r
e
a
d
o
u
t
P
t
r
:
 
i
n
t

B
c
id
S
e
tt
in
g
s

-
f
i
r
M
u
l
t
i
p
l
i
e
r
s
:
 
v
e
c
t
o
r
<
i
n
t
>

-
e
d
g
e
T
h
r
e
s
h
o
l
d
s
:
 
v
e
c
t
o
r
<
i
n
t
>

-
s
a
t
u
r
a
t
i
o
n
T
h
r
e
s
h
o
l
d
:
 
i
n
t

-
a
n
a
l
o
g
u
e
B
c
i
d
D
a
c
:
 
i
n
t

F
a
d
c
S
e
tt
in
g
s

-
p
e
d
e
s
t
a
l
D
a
c
:
 
i
n
t

-
s
t
r
o
b
e
D
e
l
a
y
:
 
i
n
t

-
c
o
a
r
s
e
D
e
l
a
y
:
 
i
n
t

L
u
tV
a
lu
e
s

-
d
a
t
a
:
 
v
e
c
t
o
r
<
i
n
t
>

L
u
tS
e
tt
in
g
s

-
o
f
f
s
e
t
:
 
i
n
t

-
s
l
o
p
e
:
 
i
n
t

0
.
.
1

6
4
.
.
6
4

6
4
.
.
6
4

6
4
.
.
6
4

T
T
C
rx
S
e
tt
in
g
s

-
c
l
k
D
e
s
1
D
e
l
a
y
:
 
i
n
t

-
c
l
k
D
e
s
2
D
e
l
a
y
:
 
i
n
t

-
c
o
a
r
s
e
D
e
l
a
y
:
 
i
n
t

-
c
o
n
t
r
o
l
B
i
t
s
:
 
i
n
t

S
e
t
t
i
n
g
s
 
f
r
o
m
 
d
i
f
f
e
r
e
n
t
 
c
a
l
i
b
r
a
t
i
o
n
s

s
t
o
r
e
d
 
i
n
 
s
e
p
a
r
a
t
e
 
O
K
S
 
f
i
l
e
s

Schema for PreProcessor calibration data.

7



The CalibConfiguration and module settings objects would probably

be kept in one file, separate from the device settings. This file should be fairly

static, while the device data files can change - as long as the OKS unique IDs of

the device data objects in new calibration files match those expected in the top

level file.

The following sections describe some of the calibration data classes in a bit

more detail.

6.2 Energy Calibration

Every channel in the PPMs contains a 1024 entry lookup table (LUT) for the en-

ergy calibration. This can be filled by downloading all 1024 values. Alternatively,

if the calibration is linear, the PPrASIC can fill the LUT itself, given an offset

(pedestal) and a slope.

To minimise the data value, the LUT for a single channel should therefore be

implemented as a simple object for the linear case with a link to a second object

containing the explicit LUT values only if required.

6.3 BCID Settings

6.4 Input Timing Calibration

6.5 Internal Timing Setup

6.6 Readout Settings

7 Trigger Menu

A partial schema for the level 1 calorimeter trigger menu is shown in figure 7.

7.1 CP Thresholds

Each CPM needs to be told which algorithm to run for each of the 16 configurable

e/gamma or tau/hadron thresholds. This must be the same for all CPMs in the

system. There should therefore be a single object (L1ClusterThreshold)

per threshold for the whole system.

Each of the 16 thresholds actually consists of four separate values: the e/gamma

or tau/hadron cluster threshold, the EM layer isolation threshold, the Hadronic

layer isolation threshold and the Hadronic layer core veto threshold. The latter is

only used in the e/gamma algorithm. Although in practice these values will be the

8



TriggerConfiguration

L1TriggerMenu
-m_sumEtThresholds: vector<int>
-m_missEtThresholds: vector<int>
-m_jetSumEtThresholds: vector<int>

+clusterThresholds(): vector<L1ClusterThreshold*>
+jetThresholds(): vector<L1JetThreshold*>
+fwdJetThresholds(): vector<L1FwdJetThreshold*>
+sumEtThresholds(): vector<int>
+missEtThresholds(): vector<int>
+jetSumEtThresholds(): vector<int>
+jetElementThreshold(phi:int,eta:int): int
+sumElementThreshold(phi:int,eta:int): int

L1ClusterThreshold
-m_algorithm: enum {EM,Tau}
-m_multiplicity: int

+algorithm(): enum {EM,Tau}
+multiplicity(): int
+cluster(phi:int,eta:int): int
+emIsol(phi:int,eta:int): int
+hadIsol(phi:int,eta:int): int
+hadVeto(phi:int,eta:int): int

L1ClusterThreshValue
-m_clusterThresh: int
-m_emIsolThresh: int
-m_hadIsolThresh: int
-m_hadVetoThresh: int
-m_phiMin: int
-m_phiMax: int
-m_etaMin: int
-m_etaMax: int

+cluster(): int
+emIsol(): int
+hadIsol(): int
+hadVeto(): int
+valid(phi:int,eta:int): bool

L1JetThreshold
-m_window: enum {W4,W6,W8}
-m_multiplicity: int

+window(): enum {W4,W6,W8}
+multiplicity(): int
+threshold(phi:int,eta:int): int

L1FwdJetThreshold
-m_multiplicity: int
-m_threshold: int

+multiplicity(): int
+threshold(): int

L1ThreshValue
-m_threshold: int
-m_phiMin: int
-m_phiMax: int
-m_etaMin: int
-m_etaMax: int

+threshold(): int
+valid(phi:int,eta:int): bool

Level 1 Calorimeter Trigger Menu.

9



same for all channels of all CPMs, in principle they may vary across the eta range,

and possibly to compensate for dead calorimeter channels.

The corrections for dead channels and transition regions between the different

calorimeters could be applied at the point of loading the thresholds, or by the

program which creates the threshold objects from the trigger menu. Even in the

former case, there may be physics reasons in the trigger menu leading to an eta

dependent threshold. So it is probably best to assume that the trigger menu may

generate more than just a single value per threshold.

The complete collection of threshold data will need to be stored in the condi-

tions database. To avoid storing excessive quantities of identical data, the thresh-

old definition should probably be implemented as a list of threshold values and the

{phi,eta} regions in which they apply. However the API for the L1ClusterThreshold
should hide the implementation and the L1ClusterThreshValues should not

be visible to the rest of the software.

7.2 JEP Thresholds

Similar considerations apply to the Jet thresholds. However here it is not so clear

that the algorithm choice (jet window size) has to be constant over the whole

system for a given threshold.

The Forward Jet algorithm is not yet certain and it is not yet clear if it will be

necessary to describe it in a separate object or if the L1JetThreshold class

can be used for forward jets as well.

The JEP system includes two thresholds which are applied in common to all

jet elements and again at the entry of the jet elements to the total Et summing tree.

Although they are common to all L1JetThresholds they may still vary across

{phi,eta} space.

The various Et thresholds are single system-wide values and can therefore be

attributes of the menu object itself.

References

[1] ATLAS Level 1 Calorimeter Trigger: home page

http://hepwww.pp.rl.ac.uk/Atlas-L1

[2] Configuration Data for the ATLAS Level 1 Calorimeter Trigger (ATL-DA-

EP-02)

http://edmsoraweb.cern.ch:8001/cedar/doc.page?document id=111349

10

http://hepwww.pp.rl.ac.uk/Atlas-L1
http://edmsoraweb.cern.ch:8001/cedar/doc.page?document_id=111349


[3] ATLAS Online Software Configuration Databases

http://atddoc.cern.ch/Atlas/DaqSoft/components/configdb

[4] ATLAS L1Calo Trigger Labelling Guidelines

http://www.hep.ph.qmul.ac.uk/l1calo/doc/pdf/labelv032.pdf

11

http://atddoc.cern.ch/Atlas/DaqSoft/components/configdb
http://www.hep.ph.qmul.ac.uk/l1calo/doc/pdf/labelv032.pdf

	Introduction
	Categories of Data

	Requirements and Use Cases
	Data Access Libraries
	Database Organisation
	Hardware Configuration
	Naming Conventions

	Calibration
	Overview
	Energy Calibration
	BCID Settings
	Input Timing Calibration
	Internal Timing Setup
	Readout Settings

	Trigger Menu
	CP Thresholds
	JEP Thresholds


