The SNO+ Experiment

Jeanne Wilson, QMUL

Neutrino networks, 29/09/10
Contents

• Quick experimental description

• Physics potential
 • Solar measurements
 – neutrino oscillation parameter improvements
 – new physics?
 – Solar model information
 • Double beta
 • Reactor neutrinos
 • Geoneutrinos
 • Supernovae
 • Nucleon decay
Current UK SNO+ Involvement

Oxford University:
Steve Biller, Nick Jelley, Armin Reichold, Phil Jones, Ian Coulter
(UK Spokesperson & chair of Reconstruction group)

Sussex University:
Elisabeth Falk, Jeff Hartnell, Simon Peeters, Gwenaelle Lefeuvre, Shak Fernandes, James Sinclair
(Head SNO+ Calibration Group)

Leeds University:
Stella Bradbury, Joachim Rose

Queen Mary University of London:
Jeanne Wilson
(SNO+ Analysis Coordinator)

Liverpool University
Neil McCauley
(Data Flow CoConvener)

10 academics
Creighton Mine

World’s Deepest Continuous Shaft
Flat Overburden

INCO - Creighton Mine

[Diagram showing depth, feet of standard rock, and muon intensity in meters squared per year, with points for WIPP, Soudan, Kamioka, Boulby, Gran Sasso, Homestake CI-Ar, Baksan, Frejus, Sudbury, and the Deep Underground Laboratory.]
This was SNO...

- Acrylic vessel (AV) 12 m diameter
- 1000 tonnes D2O ($300 million)
- 1700 tonnes H2O inner shielding
- 5300 tonnes H2O outer shielding
- ~9500 PMT's
This is SNO+

- Acrylic vessel (AV) 12 m diameter
- ~780 tonnes of LS
- 1700 tonnes H2O inner shielding
- 5300 tonnes H2O outer shielding
- ~9500 PMT’s

~50kg 150Nd
Hardware improvements

• Install hold-down ropes
• Upgraded electronics
• Repaired PMTs
• New glove box and radon sealed interface
• New calibration hardware
• Clean + survey acrylic vessel
Physics goals

- Low energy solar neutrinos
- Neutrino-less double beta decay of 150Nd
- Reactor neutrinos
- Geo-neutrinos
- Supernovae neutrinos
- Nucleon decay
Physics goals

• Low energy solar neutrinos
• Neutrino-less double beta decay of ^{150}Nd
• Reactor neutrinos
• Geo-neutrinos
• Supernovae neutrinos
• Nucleon decay
Low Energy Solar Neutrinos

- complete our understanding of neutrinos from the Sun

^8B pep, CNO, ^7Be, pp, hep

p-p Solar Fusion Chain

- $p + p \rightarrow ^2\text{H} + e^+ + \nu_e$
- $p + e^- + p \rightarrow ^2\text{H} + \nu_e$
- $^2\text{H} + p \rightarrow ^3\text{He} + \gamma$
- $^3\text{He} + ^3\text{He} \rightarrow ^4\text{He} + 2p$
- $^3\text{He} + ^4\text{He} \rightarrow ^7\text{Be} + \gamma$
- $^7\text{Be} + e^- \rightarrow ^7\text{Li} + \gamma + \nu_e$
- $^7\text{Li} + p \rightarrow \alpha + \alpha$
- $^8\text{B} \rightarrow 2\alpha + e^+ + \nu_e$

CNO Cycle

- $^{12}\text{C} + p \rightarrow ^{13}\text{N} + \gamma^{13}\text{N} \rightarrow ^{13}\text{C} + e^+ + \nu_e$
- $^{13}\text{C} + p \rightarrow ^{14}\text{N} + \gamma$
- $^{14}\text{N} + p \rightarrow ^{15}\text{O} + \gamma$
- $^{15}\text{O} \rightarrow ^{15}\text{N} + e^+ + \nu_e$
- $^{15}\text{N} + p \rightarrow ^{12}\text{C} + \alpha$
- $^{17}\text{F} \rightarrow ^{17}\text{O} + e^+ + \nu_e + 2.76\text{ MeV}$
Solar Neutrinos

Gallium = pp + ⁷Be + ⁸B

Borexino – ⁷Be

SNO – ⁸B

Neutrino Spectrum (±1σ)
SNO CC Recoil-Electron Spectrum

Flat: $\chi^2 = 21.52 / 15$ d.o.f.

Previous global best-fit
LMA point:
$\tan^2\theta_{12} = 0.468,$
$\Delta m^2 = 7.59 \times 10^{-5}$ eV2
Borexino

- 300tonnes
- 2200 PMTs
- 3500mwe

arXiv:0805.3843v2
What is going on in between?

- Exploring the matter vacuum transition sensitive to new physics.
- New neutrino-matter couplings can be parameterized by new MSW term, ε
- Relative effect of new physics largest at resonance
- for $\Delta m^2 = 8 \times 10^{-5} \text{ eV}^2$, $\theta = 34^\circ N_e$ at the centre of the Sun $\rightarrow E$ is 1-2 MeV
pep neutrinos

• $p + e^- + p \rightarrow ^2H + \nu_e$
• 1.44MeV
• Only $\pm 1.5\%$ theoretical uncertainty
• ν-e elastic scattering cross section well known

• Fantastic!

 — Hold on, why didn’t Borexino measure this then??
\(^{11}\text{C} \)

- SNO+ at 6000mwe, Borexino at 3500mwe
- Muon flux factor 100 less than Borexino (>600 less than KamLAND)
Survival Probability for Solar Neutrinos: All Experimental Data Distilled

Solar Neutrino Survival Probability

- Gallium subtracting B-8 and Be-7
- 2008 Borexino Be-7
- Chlorine subtracting B-8

blue LMA \[\Delta m^2 = 7.59 \times 10^{-5} \text{ eV}^2 \]
\[\tan^2 \theta = 0.457 \]

magenta Friedland et al., NSI solution

what will SNO+ measure?

SNO LETA polynomial band
SNO+ pep Solar Neutrino Signal

3600 pep events/(kton·year), for electron recoils >0.8 MeV
CNO neutrinos

Bahcall–Serenelli 2005
Neutrino Spectrum (±1σ)
CNO neutrinos

- Large theoretical uncertainties
- Never measured.
- Flux linearly dependent on core solar metallicity.
- Solar models assume initial core metallicity to be same as photosphere.
- Discrepancy between photospheric absorption lines, 3D modelling and helioseismology data casts doubt on this assumption.
- Test with CNO measurement.
SNO+ CNO and SNO 8B

- use the SNO 8B measurement to constrain “environmental variables” in the solar core which also affects CNO ν
- measure CNO flux (to ±10%) and compare with solar models to differentiate high-Z / low-Z core metallicity

which band will SNO+ measure?

SNO LETA 8B Result
Physics goals

• Pep solar neutrinos
• Neutrino-less double beta decay of ^{150}Nd
• Reactor neutrinos
• Geo-neutrinos
• Supernovae neutrinos
• Nucleon decay
\[\text{Two Neutrino Spectrum} \]
\[\text{Zero Neutrino Spectrum} \]
\[\Gamma(2\nu) = 100 \times \Gamma(0\nu) \]
SNO+ Double Beta Decay

- ^{150}Nd
 - $Q = 3.37 \text{MeV}$
 - largest phase space, fast rate
 - 5.6% natural abundance, enrichment possible
- Large, homogeneous liquid detector leads to well-defined background model
- Source in–source out capability
- Poor energy resolution but high statistics
Phase 1 $0\nu\beta\beta$ in SNO+

Simulations of signals and backgrounds for one year of data

Fit residuals $<m_\nu> = 0.27\text{eV}$
Natural Nd in SNO+ - sensitivity
Physics goals

- Pep solar neutrinos
- Neutrino-less double beta decay of 150Nd
- Reactor neutrinos
- Geo-neutrinos
- Supernovae neutrinos
- Nucleon decay
Reactor neutrinos

• characteristic coincidence signal
 • $p + \bar{\nu}_e \rightarrow n + e^+$

• Bruce, Pickering and Darlington nuclear power stations

• $L > \text{KamLAND}$

• Flux 5 times less

• Confirmation of KamLAND result in different situation
• Should be first experiment to "see" an oscillation-induced dip in a neutrino spectrum
Reactor neutrinos

- characteristic coincidence signal
 - \(p + \bar{\nu}_e \rightarrow n \)

- Bruce, Pickering and Darlington nuclear power stations

- \(L > \text{KamLAND} \)

- Flux 5 times less

- Confirmation of KamLAND result in different situation

- Should be first experiment to "see" an oscillation-induced dip in a neutrino spectrum
Physics goals

- Pep solar neutrinos
- Neutrino-less double beta decay of 150Nd
- Reactor neutrinos
- Geo-neutrinos
- Supernovae neutrinos
- Nucleon decay
Geoneutrinos

• From β-decay of radioactive isotopes in the earth's mantle and crust, 40K and 238U and 232Th chains

 $p + \bar{\nu}_e \rightarrow n + e^+$

• Higher signal, less background than KamLAND

• KamLAND: 33 events per year (1000 tons CH$_2$) / 142 events reactor

• SNO+: 44 events per year (1000 tons CH$_2$) / 38 events reactor
Geoneutrinos

- From β-decay of radioactive isotopes in the earth's mantle and crust, 40K and 238U and 232Th chains
 - $p + \bar{\nu}_e \rightarrow n + e^+$
- Higher signal, less background than KamLAND

- SNO+: 44 events per year (1000 tons CH$_2$) / 38 events reactor
Physics goals

- Pep solar neutrinos
- Neutrino-less double beta decay of 150Nd
- Reactor neutrinos
- Geo-neutrinos
- Supernovae neutrinos
- Nucleon decay
Supernovae neutrinos

- SN @ 10kPc \rightarrow \sim600 events in SNO+
- Scintillator sensitive to many modes
- ν and $\bar{\nu}$
- Some only ν_e, some all flavours
- Different thresholds
- Some modes have distinctive gamma signatures

We will also participate in SNEWS
Physics goals

- Pep solar neutrinos
- Neutrino-less double beta decay of ^{150}Nd
- Reactor neutrinos
- Geo-neutrinos
- Supernovae neutrinos
- Nucleon decay
Nucleon decay

- SNO made limit on invisible modes such as
 \[n \rightarrow 3\nu \]

- Search for \(~6\text{MeV}\) \(\gamma\) from de-excitation of residual \(^{16}\text{O}\) nucleus after loss of \(n\) or \(p\).
- Compare \(\text{D}_2\text{O}\) and salt data

Nucleon decay

• Current bound $\tau_{\text{inv}} > 5.8 \times 10^{29}$ years (Araki et al., PRL, 96, 2006)
• Virtually no background above 6MeV in SNO+
• If no signal in 1 month expect
 \[\tau_{\text{inv}} > 2 \times 10^{30} \text{ years} \]
• We need to take H_2O data when commissioning and filling SNO+ detector anyway.
Timescale

2010
• Cavity work
• Cleaning
• PMT repairs

2011
• Install hold-down ropes
• Install purification systems
• Install new calibration hardware
• Electronics upgrades completed
• Begin water fill

2012
• Summer: Detector filled with scintillator
• Start data taking
Summary

• SNO+ experiment going ahead
• Strong UK involvement
• Rich physics programme
 – Solar neutrino oscillations
 • Oscillation parameters and MSW, new physics
 – Majorana?
 – Neutrino mass
 – Reactor neutrino oscillation confirmation
 – Supernovae probe of oscillations
 – Stellar modelling
 – Geothermal power
 – Nucleon decay
SNO+ is in SNOLAB
Allowed phase space

H-M evidence?

We Are Here

Inverted

Degenerate

Next Generation

Our Dreams

$U_{e1} = 0.866 \quad \delta m_{\text{sol}}^2 = 70 \text{ meV}^2$

$U_{e2} = 0.5 \quad \delta m_{\text{atm}}^2 = 2000 \text{ meV}^2$

$U_{e3} = 0$

^{76}Ge

$\sim 10^{25} \text{ yrs}$

$\sim 10^{26} \text{ yrs}$

$\sim 10^{27} \text{ yrs}$

$\sim 10^{28} \text{ yrs}$

$\sim 10^{29} \text{ yrs}$
Why *pep* Solar Neutrinos?

SSM pep flux:
- uncertainty ±1.5%
- known source
- known cross section (ν-e scattering)
 → measuring the rate gives the survival probability
 → precision test

for neutrino physics with low energy solar neutrinos, have to achieve precision similar to SNO or better...it’s no longer sufficient to just detect the neutrinos

pep solar neutrinos:
- \(E_\nu = 1.44 \text{ MeV} \)
- ...are at the right energy to search for new physics

\[\Delta m^2 = 8.0 \times 10^{-5} \text{ eV}^2 \]
\[\tan^2 \theta = 0.45 \]

observing the rise confirms MSW and our understanding of solar neutrinos
Why *pep* Solar Neutrinos?

SSM pep flux:
- uncertainty ±1.5%
- known source
- known cross section (ν-e scattering)
- → measuring the rate gives the survival probability
- → **precision test**

for neutrino physics with low energy solar neutrinos, have to achieve precision similar to SNO or better...it’s no longer sufficient to just detect the neutrinos

pep solar neutrinos:
\[E_\nu = 1.44 \text{ MeV} \]
...are at the right energy to search for new physics

\[\Delta m^2 = 8.0 \times 10^{-5} \text{ eV}^2 \]
\[\tan^2 \theta = 0.45 \]

observing the rise confirms MSW and our understanding of solar neutrinos
Why *pep* Solar Neutrinos?

SSM pep flux:
- uncertainty ±1.5%
- known source
- known cross section (ν-e scattering)
- → measuring the rate gives the survival probability
- → precision test

for neutrino physics with low energy solar neutrinos, have to achieve precision similar to SNO or better...it’s no longer sufficient to just detect the neutrinos

pep solar neutrinos:
- $E_\nu = 1.44$ MeV
- ...are at the right energy to search for new physics

stat + syst + SSM errors estimated

$\Delta m^2 = 8.0 \times 10^{-5}$ eV2
$\tan^2 \theta = 0.45$

observing the rise confirms MSW and our understanding of solar neutrinos
Mass-Varying Neutrinos

- cosmological connection: mass scale of neutrinos and the mass scale of dark energy are similar
- postulating a scalar field and neutrino coupling results in neutrinos whose mass varies with the background field (e.g. of other neutrinos)

- solar neutrinos affected?
- \(\text{pep } \nu: \) a sensitive probe

Barger, Huber, Marfatia, hep-ph/0502196

pep ν and θ_{13}

- Solar neutrinos are complementary to long baseline and reactor experiments for θ_{13}
- Hypothetical 5% stat. 3% syst. 1.5% SSM measurement
- Has discriminating power for θ_{13}
SNO...
...To SNO+

- Existing AV Support Ropes
- AV Hold Down Ropes
SNO+ Liquid scintillator

- Cheap
- Safe
- Compatible with SNO acrylic
- + PPO fluor
- Good light yield: ~400 PMT hits / MeV
Background rejection

• Radioactive backgrounds from Borexino purification levels
• We hope to do better
• Plus analytical rejection:
 – α-β differentiation (alpha quenching)
 – Timing coincidences eg Bi-Po
shown (right) is the 90% CL lower limit on the half-life as expected sensitivity and the coloured bands show the “frequentist” interval in which the limit is expected to fall

- Modified Frequentist CLs method*