

HI results beyond F2

Daniel Traynor, 18/01/08

Quark

- Introduction to HERA physics and the HI detector.
- The search for new physics.
- α_s from jets.

HI Physics usable sample ~500 pb⁻¹ electrons or positrons 4 different proton energies polarised lepton beams **HI and HERA**

Charge Current

LO QCDCompton

q

q

- Measure structure functions:
 - F_2 , xF_3 , F_s , F_c , F_b , F_t .
- Test QCD.
- Study weak neutral and charged current with polarisation.
- Search for new physics:
 - e or q substructure, new gauge bosons, new interactions.
- Nothing on:
 - Diffraction, low-x.

- Measure structure functions:
 - F_2 , xF_3 , F_s , F_c , F_b , K_s
- Test QCD.
- Study weak neutral and charged current with polarisation.
- Search for new physics:
 - e or q substructure, new gauge bosons, new interactions.
- Nothing on:
 - Diffraction, low-x.

- Measure structure functions:
 F₂, xF₃, F_s, F_c, F_b, K
 Talk by Eram
- Test QCD.
- Study weak neutral and charged current with polarisation.
- Search for new physics:
 - e or q substructure, new gauge bosons, new interactions.
- Nothing on:
 - Diffraction, low-x.

- Measure structure functions:
 F₂, xF₃, F_s, F_c, F_b, K
 Talk by Eram
- Test QCD.
- Study weak neutral and charged current with polarisation.
- Search for new physics:
 - e or q substructure, new gauge bosons, new interactions.
- Nothing on:
 - Diffraction, low-x.

Sends most people to sleep

central muon detector

	HI (1992)	ATLAS (2008)	
Bunch crossing intervals	96 ns (10.4 MHz) 25 ns (40 Mł		
LI trigger rate	I kHz (2.5 μs)	75 kHz (2.5 µs)	
# of channels	750,000	14,000,000	
event size	100 kBytes	I.5 MByte	
Physics out put	5 Hz 1996 (50 Hz 2007)	200 Hz	
data production	10 GBytes /day	100 GBytes / day	
overall size	10 x10 x12 m	25 x 25 x 46 m	

Search for new Physics

"HERA as a frontier collider"

- NC cross section and the quark radius.
- Polarised CC cross section and wrong handed neutrinos.
- Isolated leptons with missing P_t.

Neutral Current Measurements

Neutral current single differential cross section

 $e^{\pm}p \rightarrow e^{\pm}X$

HERAI+II luminosity (435 pb⁻¹)

electroweak interference effects

Beam charge (and polarisation) effects due to the interference of photon with Z boson

Data and standard model prediction agree within errors

Fermion substructure

 $R_{e,q} < 0.74 \cdot 10^{-18} m at 95\% CL$

Charged Current Measurements

neutrino

Charged Current single differential cross section

Suppressed cross section at low Q² due to propagator mass (M_W~80 GeV)

 $NC \sim I/Q^4$ $CC \sim [M^2_W/Q^2 + M^2_W]^2$

At high Q2 NC and CC cross section approximately equal

Difference between e^+ and e^-CC I) Two *u*'s and one *d* quark. 2) Angular momentum conservation $e^+(\rightarrow) + d(\rightarrow) \Rightarrow J_z = I \Rightarrow (I - y2)$

 $e^{-}(\leftarrow) + u(\rightarrow) \Rightarrow J_z=0 \Rightarrow isotropic$

Data and standard model agree.

Charged Current Polarisation

Longitudinal polarisation of lepton beam: new at HERA II.

The transverse polarisation builds up naturally (SokolovTernov effect)

Spin rotators flip the polarisation to longitudinal just before the interaction regions.

Typical level of polarisation 30 – 40 %

In SM only left handed particles (right handed antiparticles) interact via CC

Expect linear dependence of CC cross section on Polarisation!

Charged current Measurements

In SM only left handed particles (right handed antiparticles) interact via CC

Right handed fermions mediated by a boson of mass below 186GeV excluded at 95% CL assuming SM and a massless right handed V_e

<u>event views</u>

Isolated leptons with missing Pt: HERA1 result

Isolated leptons with missing Pt: data taking

Isolated leptons with missing Pt: HERAII

H1 HERA I+II P _T ^X > 25 GeV	e channel obs. / exp. (signal)	μ channel obs. / exp. (signal)	e and μ channels obs. / exp. (signal)
e+p data (294 pb-1)	11 / 4.7 ± 0.9 (75%)	10 / 4.2 ± 0.7 (85%)	21 / 8.9 ± 1.5 (80%)
e⁻p data (184 pb⁻¹)	3 / 3.8 ± 0.6 (61%)	$0/3.1 \pm 0.5$ (74%)	3 / 6.9 ± 1.0 (67%)

Excess at 3.0σ level in e⁺p data only - difference between data sets

Isolated leptons with missing Pt: HERAII

<u>BUT</u>		Ρ _τ ×>	25 GeV	electrons Data/SM	muons Data/SM
ZEUS: good agreement with the Standard Model	e⁺p	H1	294 pb ⁻¹	11/4.7±0.9	10/4.2±0.7
		ZEUS	228 pb⁻¹	1/3.2±0.4	3/3.1±0.5
	e-p	H1 ZEUS	184 pb ⁻¹ 204 pb ⁻¹	3/3.8±0.6 5/3.8±0.6	0/3.1±0.5 2/2.2±0.3

HI+ZEUS combined analysis

High P_T^X excess in e⁺p data remains, even after inclusion of the ZEUS data, with a lower significance of 1.8 σ

No obvious physics process

α_s from Jets

H1 Collab., A. Aktas et al., Phys.Lett.B653: 134-144, 2007

Count all jets in phase space as function of Q^2

- Cross section depends on:
- I. QCD matrix elements.
- **2.** Strong coupling α_s .
- 3. Parton density functions of the proton. Determine a α_s by fitting the theory to data

Count all jets in phase space as function of Q^2

- Cross section depends on:
- I. QCD matrix elements.
- **2.** Strong coupling α_s .
- 3. Parton density functions of the proton. Determine a α_s by fitting the theory to data

Count all jets in phase space as function of Q^2

- Cross section depends on:
- I. QCD matrix elements.
- **2.** Strong coupling α_s .
- 3. Parton density functions of the proton. Determine a α_s by fitting the theory to data

Frame of reference

q' q' No E_T, No jets in Breit frame!

LAB

Event selection NC DIS

$$\begin{split} & 150 < Q < 15000 \ GeV^2, \\ & 0.2 < y < 0.7, \\ & 99/2000 \ data \ set, 64.5 \ pb^{-1} \\ & Jet \ selection: \\ & Inclusive \ k_T, \ p_T \ recombination \ scheme, \ R=1.0 \\ & -1.0 < \theta_{LAB} < 2.5, \ 7 < E_{T,BREIT} < 50 \ GeV, \\ & ``inclusive \ jet \ cross \ section'': \ each \ jet \ of \ an \\ & event \ contributes \ to \ the \ cross \ section \end{split}$$

Jet Reconstruction

No unique definition of a jet, but

Inclusive kt cluster algorithm:

- I. Similar to e+e- algorithms
- 2. Favoured by theory over (most) cone algorithms
- 3. Infrared and collinear safe at all orders ______ JHEP 05(2007)086
- 4. Factorisable
- 5. Smaller Hadronisation corrections

Data Correction & Systematics

Correction for acceptance and resolution using Monte Carlo RAPGAP (ME+PS) and DJANGO (CDM) <20%. Correction for QED radiation with HERACLES < 15%. Systematic uncertainties:

 2% hadronic energy scale → 4% on cross section.

- 2. Model dependence (ME+PS, CDM) \rightarrow 3% on cross section.
- 3. Lepton energy scale, lepton angle \rightarrow small.
- 4. ... \rightarrow small

Experimental error ~5%, mainly due to hadronic energy scale and model dependence.

NLOJet++ (Zoltan Nagy)

Results

Inclusive Jet Cross Section

Good description of the data by theory (too good?)

Normalised Jet Cross Section

Instead of counting number of jets use (#jets/#events) Equals $\sigma_{jet} / \sigma_{NC DIS}$ (normalised incl. jet cross section) Experimental and theory errors reduced, e.g. Luminosity uncertainty cancels, PDF uncertainty reduced. Improve precision for results and of final α_s extraction.

Normalised Inclusive Jet Cross Section

Appearance very similar to inclusive jet cross section

 $E_{\rm T}$ spectrum gets harder with increasing Q^2

More jets per event with increasing Q^2

Reproduced at NLO

α_s Extraction

QCD predictions of the jet cross sections are calculated as a function of $\alpha_s(\mu_r = E_T)$ with the fastNLO package

Measurements and theory predictions are used to calculate a $X^2(\alpha_s)$ with the Hessian method

Fully takes into account correlations of experimental uncertainties

The experimental uncertainty of α_s is defined by that change in α_s which gives an increase in X^2 of one unit with respect to the minimal value.

The theory error is estimated by adding in quadrature the deviation of α_s from the central value when the fit is repeated with independent variations of the renormalisation scale, the factorisation scale and the hadronisation correction factor.

α_s Extraction

Each data point yields one α_s

Renormalisation scale chosen as E_T of the jet

Highest Q² interval statistically limited

Running of α_s is demonstrated in one experiment

Results are compatible → calculate the average

more

$\alpha_{\rm s}$ from Norm. Inclusive Jet Cross Section

α_s Extraction

Inclusive jet cross section, using all 24 data points $\alpha_{s}(M_{Z}) = 0.1179 \pm 0.0024 \text{ (exp)} {}^{+0.0052}_{-0.0032} \text{ (th)} \pm 0.0028 \text{ (pdf)}$

Normalised inclusive jet cross section, using all 24 data points $\alpha_s(M_Z) = 0.1193 \pm 0.0014 \text{ (exp)} + 0.0047 \text{ (th)} \pm 0.0016 \text{ (pdf)}$

Compatible within error, significant reduction of experimental uncertainty Theory error main contribution (need NNLO / resumation?)

Restricting phase space to where theory error is smallest, ZEUS approach, (700-5000GeV2)

 $\alpha_{s}(M_{Z}) = 0.1171 \pm 0.0023 \text{ (exp)} + 0.0032 \text{ (th)} \pm 0.0010 \text{ (pdf)}$

<u>HI view</u>

Do not take scale error value too seriously, only order of magnitude!

$\alpha_s(M_Z)=0.1198 \pm 0.0019(exp.) \pm 0.0026(th.)$

The Future I:HERAII

also possible

Optimised NLO scale choice, $\mu_{r,f}$, Q^2 , Q/2, 2Q, E_T+Q etc...

Improve description of data by LO Monte Carlos.

Conclusions

High statistics results from HERA II show (mostly) that the Standard model still works

High precision measurements allow the extraction of a competitive value of α_s .

 $\alpha_s(M_Z)=0.1198 \pm 0.0019(exp.) \pm 0.0026(th.)$

Future HERA data will improve on the accuracy

Measurements at HI (HERA) will still be the state-ofthe-art until the next ep collider is built. which will be in

The Future: LHeC

HI dismantling

High $P_T^X e + P_{TMiss}$ event in H1 HERA II e^+p data $P_T^e = 37$ GeV, $P_{TMiss} = 44$ GeV, $P_T^X = 29$ GeV Back

High $P_T^{X} \mu + P_{TMiss}$ event in H1 HERA II e⁻p data $P_T^{\mu} = 38 \text{ GeV}, P_{TMiss} = 51 \text{ GeV}, P_T^{X} = 24.7 \text{ GeV}$ Back

Single Top Production at HERA

- Excess of observed events at high P_T^X unlikely to be due to W production (typically low P_T^X)
 - But! Observed topology is typical signature of top decay t → bW
 - Tiny SM top production cross section < 1 fb
 - Anomalous top production via Flavour Changing Neutral Current ?
 - However: This process cannot explain asymmetry between datasets
- HERA I analyses:
 - − H1: σ (ep \rightarrow etX) < 0.55 pb
 - − ZEUS: σ (ep \rightarrow etX) < 0.23 pb

κ_{tuγ} : Anomalous γ magnetic coupling $<math>V_{tuZ}$: Anomalous Z vector coupling

H1: HERA I+II Exclusion Limits

- Cross section limits on FCNC H1 Preliminary (HERA I+II) v_{tuZ} single top extracted from Excluded discriminator using a maximum likelihood method Excl. by ZEUS New H1 upper bound on the Excl. by CDF cross section at 95% CL: $-\sigma(ep \rightarrow etX) < 0.16 pb$ Excl. by L3 Upper bound on the $\kappa_{tcy} = v_{tcZ} = 0$ 10⁻¹ anomalous coupling $m_{e} = 175 \; GeV$ $-\kappa_{tuy} < 0.14$ 10⁻¹ $|\kappa_{tuy}|$
- New limit extends into region of phase space uncovered by other colliders

A BSM Model favouring e+p over e-p

Particle coupling to e-q with fermion number F=0 ?

Large mass i.e. large x_{Bj} d >> \overline{d} , hence $\sigma(e+) >> \sigma(e-)$

Another example : Squarks in R-parity violating SUSY ?

If LSP is \widetilde{v}_{τ} and no large RpV coupling involving the τ : \widetilde{v}_{τ} could be long-lived

RpV via couplings involving two 3rd generation fields, light sbottom. Large $M_{top} \rightarrow large x_{Bj}$

Scan of Renormalisation Scale

Theory error: variation of μ_r by factor 2

- Do not use endpoints, but maxima within interval!
- Important at high Q², theory error gets a bit larger

Scan of Renormalisation Scale

- NC cross section shows opposite slope than jets
 - No cancellations for the theory errors for the ratio jet/NC (just the opposite!)

back

QCD Fits

Fit of $\alpha_s(M_z)$ with fastNLO, NLOJET++ / DISENT

- Cross section data points are correlated.
- Method used in 95-97 analysis & H1-01/98-536
- χ^2 definition

$$-\chi^2 = \sum_i \frac{(\sigma_i^{exp} - \sigma_i^{FastNLO}(\alpha_s(M_Z))[1 - \sum_k \delta_{i,k}(\epsilon_k)])^2}{\delta_{i,uncorr}^2} + \sum_k \epsilon_k^2$$

-i runs over measured cross section

-
$$\sigma_i^{FastNLO}(\alpha_s(M_Z))$$
: FastNLO calculation

-k runs over all sources of correlated uncertainties

- $\delta_{i,k}(\epsilon_k)$: contribution from kth correlated source to ith measurements
- $\alpha_s(M_Z)$ and ϵ_k : fitted parameters

• Using TMinuit of ROOT package

Check Fit Method

- In the fit we use CTEQ6.5 which was build assuming $\alpha_{s}(M_{7})=0.118$
- Do we bias our result, due to correlation between gluon and α_{c} ?
- Cross check with fit method "A"
 - interpolate between 10 values of $\alpha_s(M_7)$ with CTEQ6AB
 - building averages of fits more involved

<u>back</u>