Recent results from HI

Daniel Traynor, QMUL, 17/05/05

contents

- Basic HERA Physics
- HERAII upgrade
- Jet Physics
- Pentaquarks

Basic HERA Physics

electrons - Protons

27.6 GeV 920GeV

PETRA

Kinematics

Four-momentum transfer squared $Q^2 = -q^2 = (k-k)^2$

> Bjorken x (x_{bj}) x = Q² / 2p.q

 $s = Q^2 / xy = 318 \text{ GeV}$

Inelasticity y y = p.q / p.k

Kinematics overstrained calculable from electron or proton side

How was the acclerator upgrade done

HERA2 Upgrade

HERA I provided 120 pb-1 of mostly e+ data

HERA 2 upgrade to provide 1fb⁻¹ of data with polarised electrons and positrons.

Use beam focusing magnets to increase peak luminosity x5

Also upgrade detectors for improved physics potential

How was the acclerator upgrade done

Very high Backgrounds seen in 2002 start up

le mA

Design Ip = 135 mA Ie = 55 mA

How background problems were understood

Design Ip = 135 mA Ie = 55 mA

le mA

How background problems were solved

70% of Background

Very high Backgrounds seen in 2002

central tracker has current limit of 150micro A

At full luminosity operation we would have had I mA

Major study by HI, ZEUS and HERA

Plan of action: new Collimators redesign of old collimators lead shielding new pumps bake out with luminosity

http://www-hl.desy.de/publications/Hl_sci_results.shtml

Produced by HERA

HI HV on

Jet production

Directly sensitive to QCD radiation, α_s , and gluon density in proton

Jets are found in the Breit Frame

Boost to frame where exchange boson is entirely space like

Born level has no E_t in Breit frame!

QCD produces E_t in Breit frame

Correct data for Detector effects

Correct to hadron level using LO+PS Monte-Carlo

$$R_{3/2} := \sigma_{3jet} / \sigma_{2jet} \sim c_1 \alpha_s + c_2 \alpha_s^2$$

Partial cancellations of uncertainties by taking ratio

 $\alpha_{s}(m_{Z}) = 0.1175 \pm 0.0017 \pm 0.0050^{+0.0054} - 0.0068$ ± statistical ± systematic ± theoretical How to Improve the Measurement

Increase statistics with HERA II data

Decrease hadronic energy scale uncertainty to 1%

Hadronisation uncertainty use MC@NLO

NLO scale uncertainty use NNLO?

Want to do more than just measure $\alpha_s!$

The ZEUS-JETS QCD fit

 ZEUS-JETS QCD analysis uses the full set of HERA-I inclusive DIS data and two sets of jet data

NOTE: Full details of the ZEUS-JETS fit have been presented previously, see HERA-LHC PDF subgroup meeting, "Addition of jet data to the ZEUS QCD Fit", Claire Gwenlan, June 2004. Also see DESY-05-050.

from HERA/LHC workshop

Impact of jet data on the gluon PDF

-> improvement persists up to high scales

 \rightarrow Improvement of xG at $x \sim 0.01 - 0.1$

Pentaquarks

pentaquark	quark content	seen by	not seen by
$\theta^+ \rightarrow pK_s^0$	uudds	LEPS, CLAS, ZEUS, HERMES, (13)	H, e+e-, HERA- B, CDF, PHENIX, (17)
θ++→pK+	uuuds	CLAS, STAR	HERMES, BaBar
Ξ→Ξ- Π -	ūddss	NA49	HERMES, ZEUS, BaBar, (9)
Ξ ⁰ →Ξ ⁻ π ⁺	uddss	NA49	HERMES, BaBar
$\theta^{0}_{c} \rightarrow D^{*-}p$	uuddīc	HI	ZEUS,+

Typical D*p candidates

$\theta_{c} \rightarrow (D^{*}\bar{p}) \rightarrow D^{0}\pi^{+}{}_{s} \rightarrow K^{-}\pi^{+}\pi^{+} \quad \theta_{c} (D^{*}p) \rightarrow D^{0}\pi^{-}{}_{s} \rightarrow K^{+}\pi^{-}\pi^{-}$

Observation of $D^*p(3100)$ resonance @ HI

A.Atkas et al., Phys. Lett. B588(2004)17. HERA-I, 75 pb⁻¹

Also seen in independent photoproduction sample

Results of D*p(3100) Searches

HI observation in ep \rightarrow ccX

Negative results from

ALEPH e+e-
$$\rightarrow$$
 Z0 \rightarrow cc
FOCUS $\gamma N \rightarrow cc X$
CDF pp $\rightarrow cc X$
BELLE e+e- $\rightarrow \Upsilon(4s) \rightarrow B^0B^0$
ZEUS ep $\rightarrow cc X$

Different physics processes investigated (except ZEUS) Detailed analysis of D*p(3100) from H1 needed

Acceptance corrected $R_{cor}(D*p(3100)/D*)$

Kinematic region: $I < Q^2 < 100 \text{ GeV}^2 \& 0.05 < y < 0.7$

pseudo-rapidity $\eta = -\log(\tan(\Theta/2))$ D*-inelasticity $z = (P \cdot pD^*)/(P \cdot q)$

$R_{cor}(D*p(3100)/D*) = 1.59\pm0.33\%^{+0.33}_{-0.45}\%$

In the visible D* range as given in our publication: Visible D*p range: Pt(D*p)>1.5 GeV, $-1.5 < \eta(D*p) < 1$ Visible D* range: Pt(D*)>1.5 GeV, $-1.5 < \eta(D*) < 1$, z(D*)>0.2

$\sigma(D^*p(3100))/\sigma(D^*) = 2.48 \pm 0.52\%^{+0.85}_{-0.64}\%$

Extrapolated to the full D* phase space in D*p(3100) decay: Visible D*p/D* range: Pt>1.5 GeV, -1.5< η <1

$\sigma(D^*p(3100))$ for D^*p observables

Statistical errors only

D*p(3100) production is: Suppressed for central η in the lab. MC approach in reasonable agreement with pt- and z-distributions of D*p(3100)

pentaquark	quark content	seen by	not seen by
$\theta^+ \rightarrow pK_s^0$	uudds	LEPS, CLAS, ZEUS, HERMES, (13)	H, e+e-, HERA- B, CDF, PHENIX, (17)
θ++→pK+	uuuds	CLAS, STAR	HERMES, BaBar
Ξ→Ξ- Π -	ūddss	NA49	HERMES, ZEUS, BaBar, (9)
Ξ ⁰ →Ξ ⁻ π ⁺	uddss	NA49	HERMES, BaBar
$\theta^{0}_{c} \rightarrow D^{*-}p$	uuddīc	HI	ZEUS,+

K0 Reconstruction

 $K^0_s \rightarrow \pi^+\pi^-$

K0s selection secondary vertices : combinations of oppositely charged tracks pt>0.3 GeV, |η|<1.5

 $K_{s}^{0} \approx 140,000$

Proton selection via dE/dx

Use likelihoods for separation of protons

Average proton selection efficiency ~90%

π-suppression probability 86%,96% at low momenta (p<1.5 GeV)

Extracting Upper Limits on θ + production

Zeus observation: Q²>20 GeV², 0.04<y<0.95, pt>0.5, |η|<1.5

Statistical significance ~ 4.6 σ Mass = 1521.5 ± 1.5^{+2.8}-1.7 MeV

Width = 6.1 ± 1.5 MeV (exp res 2MeV) $\sigma(ep \rightarrow eK^{0}pX)=125 \pm 27^{+36}-28$ pb (preliminary)

There are differences in the analysis particle ID, phase space etc...

Upper Limit (95%C.L.) on σ (ep-> e θ X ->e K⁰p(\bar{p})X): low p selection

M=1.52 GeV σU.L.~ 100 pb

HI limits not in contradiction with ZEUS

Christiane Risler H1 search for a narrow baryonic K⁰s p resonance, DIS 2005, April 27 19

Summary

- HERAII upgrade a success
- Competitive measure of α_s from 2/3 jet ratio
- Charm pentaquark better understood
- NO strange pentaquark seen in HI
- In all cases more data needed \rightarrow HERAII

Backup