LHeC & Lepton-hadron Colliders

- Deep Inelastic Scattering
- LHeC Design Overview
- PDFs and α_s
- Higgs in ep Collisions
- Next Steps

Eram Rizvi

PPAP Community Meeting Rutherford Lab

21-22nd July 2014

HERA Legacy

HI & ZEUS collected 0.8 fb⁻¹ in e⁺ / e⁻ modes

HERAPDF2.0 uses final combined HI/ZEUS data

Flavour separation from NC and CC DIS

Independent of nuclear effects

 $\sqrt{s} = 0.3 \text{ TeV}$

HERA data provided detailed insight into parton dynamics Established NNLO pQCD

Underpins all LHC measurements

Precise determination of PDFs (specially gluon) ⇒ accurate predictions of LHC Higgs production

Improved precision at high x (incl. gluon) Achieved with strong UK involvement $\sigma_{r, NC}^{+}(x, Q^2) \ge 2$ HERA NC e⁺p (prel.) 0.5 fb⁻¹ HI-Prelim-14-042 10^{7} $\sqrt{s} = 318 \text{ GeV}$ **Fixed Target** $= 0.00005, i=2^{\circ}$ H1 and ZEUS preliminary HERAPDF2.0 (prel.) X NLO, $Q_{min}^2 = 3.5 \text{ GeV}^2$ HI-Prelim-14-042 0. i=18 $\mu_{e}^{2} = 10 \text{ GeV}^{2}$ $x \sim 10^{-2}$ is a sweet-spot HERAPDF2.0 (prel.) NNLO $Q_{min}^2 = 3.5 \text{ GeV}^2$ 013. i=14 high precision with long Q^2 lever arm exp. uncert. 0020. i=13 **10** ' relevant for LHC Higgs production .0032, i=12 model uncert. parametrisation uncert. $\mathbf{X}\mathbf{U}_{\mathbf{v}}$ 10³ 0.013. i=9 Precision: 0.6 0.02. i=8 $1\% Q^2 < 100 \text{ GeV}^2$ 10² : 0.032. i=7 $1.5\% Q^2 < 500 \text{ GeV}^2$ 0.05, i=6 2% Q² < 3000 GeV² x = 0.08, i=510 xd. xg (× 0.05) 0.4 x = 0.13, i=4x = 0.18, i=31 x = 0.25, i=20.2 x = 0.40, i=1xS (× 0.05) 10 x = 0.65, i=010 Combined HI & ZEUS run-2 preliminary **10⁻²** 10⁻³ **10⁻¹** 10^{-4} 1 10 10² 10³ 10⁵ 10^{4} 10 X Q^2/GeV^2

US led electron-ion collider projects: EIC (JLAB) / eRHIC (Brookhaven) heavy ion programme Interest from UK community

LHeC:

ep collisions with 7 TeV LHC p-beam synchronous running with LHC pp collisions ... or FCC (hadron-electron machine)

60 GeV electron beam $\Rightarrow \sqrt{s} = 1.3 \text{ TeV}$ Polarised electron beam ~ 90%

FCC 50 TeV p-beam $\Rightarrow \sqrt{s} = 3.5$ TeV

Kinematic range:

 Q^2 → 10⁶ GeV² 10⁻⁶ < x < 1 $f = 10^{33} - 10^{34}$ cm⁻²s⁻¹

Factor ~1000 increase in \mathcal{L} compared to HERA Factor ~20 increase in x,Q² range

Collect 10 – 100 fb⁻¹ per year Precision ep physics with 1 ab⁻¹ in a decade

LHeC Physics

Physics goals complementary to LHC Precise high x PDFs extend the LHC discovery potential Higgs properties accessible at LHeC

LHC searches: largest uncertainty from PDFsATLAS contact interactions 8 TeVarXiv:1407.2410ATLAS Z-prime search 8 TeVarXiv:1405.4123ATLAS quantum gravity search 8 TeVarXiv:1311.2006

http://cern.ch/lhec

IOP Publishing

$\frac{arXiv:1206.2913}{arXiv:1211.5102} \quad CDR$

LHeC Study Group

J.L.Abelleira Fernandez^{16,23}, C.Adolphsen⁵⁷, P.Adzic⁷⁴, A.N.Akay⁰³, H.Aksakal³⁹, J.L.Albacete⁵², B.Allanach⁷³, S.Alekhin^{17,54}, P.Allport²⁴, V.Andreev³⁴, R.B.Appleby^{14,30}, E.Arikan³⁹, N.Armesto^{53,a}, G.Azuelos^{33,64}, M.Bai³⁷, D.Barber^{14,17,24}, J.Bartels¹⁸, O.Behnke¹⁷, J.Behr¹⁷, A.S.Belyaev^{15,56}, I.Ben-Zvi³⁷, N.Bernard²⁵, S.Bertolucci¹⁶, S.Bettoni¹⁶, S.Biswal⁴¹, J.Blümlein¹⁷, H.Böttcher¹⁷, A.Bogacz³⁶, C.Bracco¹⁶, J.Bracinik⁰⁶, G.Brandt⁴⁴, H.Braun⁶⁵, S.Brodsky^{57,b}, O.Brüning¹⁶, E.Bulyak¹², A.Buniatyan¹⁷, H.Burkhardt¹⁶, I.T.Cakir⁰², O.Cakir⁰¹, R.Calaga¹⁶, A.Caldwell⁷⁰, V.Cetinkaya⁰¹, V.Chekelian⁷⁰, E.Ciapala¹⁶, R.Ciftci⁰¹ A.K.Ciftci⁰¹, B.A.Cole³⁸, J.C.Collins⁴⁸, O.Dadoun⁴², J.Dainton²⁴, A.De.Roeck¹⁶, D.d'Enterria¹⁶, P.DiNezza⁷², M.D'Onofrio²⁴, A.Dudarev¹⁶, A.Eide⁶⁰, R.Enberg⁶³, E.Eroglu⁶², K.J.Eskola²¹, L.Favart⁰⁸, M.Fitterer¹⁶, S.Forte³², A.Gaddi¹⁶, P.Gambino⁵⁹ H.García Morales¹⁶, T.Gehrmann⁶⁹, P.Gladkikh¹², C.Glasman²⁸, A.Glazov¹⁷, R.Godbole³⁵, B.Goddard¹⁶, T.Greenshaw²⁴ A.Guffanti¹³, V.Guzey^{19,36}, C.Gwenlan⁴⁴, T.Han⁵⁰, Y.Hao³⁷, F.Haug¹⁶, W.Herr¹⁶, A.Hervé²⁷, B.J.Holzer¹⁶, M.Ishitsuka⁵⁸ M.Jacquet⁴², B.Jeanneret¹⁶, E.Jensen¹⁶, J.M.Jimenez¹⁶, J.M.Jowett¹⁶, H.Jung¹⁷, H.Karadeniz⁰², D.Kayran³⁷, A.Kilic⁶² K.Kimura⁵⁸, R.Klees⁷⁵, M.Klein²⁴, U.Klein²⁴, T.Kluge²⁴, F.Kocak⁶², M.Korostelev²⁴, A.Kosmicki¹⁶, P.Kostka¹⁷, H.Kowalski¹⁷ M.Kraemer⁷⁵, G.Kramer¹⁸, D.Kuchler¹⁶, M.Kuze⁵⁸, T.Lappi^{21,c}, P.Laycock²⁴, E.Levichev⁴⁰, S.Levonian¹⁷, V.N.Litvinenko³⁷ A.Lombardi¹⁶, J.Maeda⁵⁸, C.Marquet¹⁶, B.Mellado²⁷, K.H.Mess¹⁶, A.Milanese¹⁶, J.G.Milhano⁷⁶, S.Moch¹⁷, I.I.Morozov⁴⁰, Y.Muttoni¹⁶, S.Myers¹⁶, S.Nandi⁵⁵, Z.Nergiz³⁹, P.R.Newman⁰⁶, T.Omori⁶¹, J.Osborne¹⁶, E.Paoloni⁴⁹, Y.Papaphilippou¹⁶ C.Pascaud⁴², H.Paukkunen⁵³, E.Perez¹⁶, T.Pieloni²³, E.Pilicer⁶², B.Pire⁴⁵, R.Placakyte¹⁷, A.Polini⁰⁷, V.Ptitsyn³⁷, Y.Pupkov⁴⁰ V.Radescu¹⁷, S.Raychaudhuri³⁵, L.Rinolfi¹⁶, E.Rizvi⁷¹, R.Rohini³⁵, J.Rojo^{16,31}, S.Russenschuck¹⁶, M.Sahin⁰³, C.A.Salgado^{53,a} K.Sampei⁵⁸, R.Sassot⁰⁹, E.Sauvan⁰⁴, M.Schaefer⁷⁵, U.Schneekloth¹⁷, T.Schörner-Sadenius¹⁷, D.Schulte¹⁶, A.Senol²², A.Seryi⁴⁴, P.Sievers¹⁶, A.N.Skrinsky⁴⁰, W.Smith²⁷, D.South¹⁷, H.Spiesberger²⁹, A.M.Stasto^{48,d}, M.Strikman⁴⁸, M.Sullivan⁵⁷, S.Sultansoy^{03,e}, Y.P.Sun⁵⁷, B.Surrow¹¹, L.Szymanowski^{66, f}, P.Taels⁰⁵, I.Tapan⁶², T.Tasci²², E.Tassi¹⁰, H.Ten.Kate¹⁶, J.Terron²⁸, H.Thiesen¹⁶, L.Thompson^{14,30}, P.Thompson⁰⁶, K.Tokushuku⁶¹, R.Tomás García¹⁶, D.Tommasini¹⁶, D.Trbojevic³⁷, N.Tsoupas³⁷, J.Tuckmantel¹⁶, S.Turkoz⁰¹, T.N.Trinh⁴⁷, K.Tywoniuk²⁶, G.Unel²⁰, T.Ullrich³⁷, J.Urakawa⁶¹, P.VanMechelen⁰⁵, A.Variola⁵², R.Veness¹⁶, A.Vivoli¹⁶, P.Vobly⁴⁰, J.Wagner⁶⁶, R.Wallny⁶⁸, S.Wallon^{43,46,f}, G.Watt⁶⁹, C.Weiss³⁶, U.A.Wiedemann¹⁶, U.Wienands⁵⁷, F.Willeke³⁷, B.-W.Xiao⁴⁸, V.Yakimenko³⁷, A.F.Zarnecki⁶⁷, Z.Zhang⁴², F.Zimmermann¹⁶, R.Zlebcik⁵¹, F.Zomer⁴²

Several international workshops since 2008 Conceptual Design Report Published mid 2012 Will focus on new developments since then

LHeC Design

CNGS

Point 8

60 GeV electron beam achieved with
2 x I km recirculating energy recovery linac
3 pass arcs with 2 x 60 cavity cryo-modules
accelerating gradient 20 MV/m

Total machine power ~ 80 MW

- cryogenics
- linac power
- synchrotron compensation
- injectors & magnets

Tunnel civil engineering independent of LHC

LHeC could operate simultaneously

- with pp collisions in LHC
- with ep collisions in FCC-he or be injector for FCC-ee machine

 $\mathcal{L} = 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ seems feasible compared to CDR:

- more intense electron source
- better p focussing
- smaller p & e emittance
- over-performance of existing LHC

 \pounds for ILC / LHC / LHeC all on a par Higgs production cross section in ee \approx ep \sim 200 fb

Poin

LH. r Design Requirements

3.5 T solenoid 0.5 T dipole magnets inside IR to bend electron beam to collision strong synchrotron fan \rightarrow elliptical beam pipe in IR Calorimetry similar to ATLAS LAr EM calo $\sigma/E = 9\% / \sqrt{E \oplus 0.3\%}$ Scintillating tile HAD calo $\sigma/E = 32\% / \sqrt{E \oplus 9\%}$

Muon system - tagging only - momentum from inner tracker

FCC-he detector design similar

Need I° acceptance

in forward region for high x & Higgs

- in backward region for low x kinematic reco
- 4 Layer pixel tracker
- 4 layer central Si tracker + fwd/bwd planes
- 5/3 wheel forward / backward Si tracker

Provides b-jet tagging to $\eta = 3$ Transverse impact parameter resolution = $10\mu m$

PPAP Community Meeting - RAL - 2014

HERA I+BCDMS

T+T.HC (Wasymm)

0.3

PDFs - heavy flavours

LHeC will provide direct access to charm and beauty PDFs Simulations here assume $E_e = 100$ GeV for 10 fb⁻¹ data Tagging efficiency ~10% for charm and 50% for beauty

In addition charged current W+s \rightarrow c process allows direct measurement of strange

Simple parton level study with statistical uncertainties only (<1%) Guided by experience from HERA & LHC tagging performance

Very large phase space opened up Region of x>0.1 becomes accessible at highest Q^2 Forward low angle tagging to ~1° essential for high x

Important for testing heavy flavour theory

Strong Coupling αs

Strong coupling is a fundamental parameter of SM Current experimental precision ~ 1% (mostly tau & DIS) analyses performed at NNLO and N³LO

LHeC data on inclusive structure functions could reach $\alpha_S \pm 0.2\%$ Includes projected experimental uncertainties (incl. correlations) Accuracy is obtained from large kinematic range in Q² constrains xg via scaling violations large range in x: $10^{-6} < x < 0.8$ accurate low x data constrain high x by momentum sum rule accurate high x data reduce α_S / xg correlation range further extended using HERA data

DIS jet data could bring further improvement if theory is controlled

Theoretical treatment of heavy quarks will be important

current α_s uncertainty — projected α_s uncertainty from LHeC + HERA inclusive DIS

Projected LHC Higgs Sensitivity

Higgs Production in pp

<u>arXiv:1305.2090</u>

NNLO Higgs production cross sections in pp \sqrt{s} = 14 TeV

Bands show the PDF eigenvector uncertainty ~2-4% Additional scale and α_s uncertainty not shown ~10% & ~5% resp.

LHeC could attain precise PDFs with ~0.3% exp. error for σ_{Higgs} Theoretical uncertainties from α_S and scale variations Large Q² lever arm could yield precision $\alpha_S \sim 0.2\%$ uncertainty N³LO required to reduce scale uncertainty

Together these could provide sensitivity to $M_{Higgs}\xspace$ through cross-section dependence

Great potential to enhance LHC Higgs programme including sensitivity to exotic Higgs scenarios

Higgs Production in ep

CC: si

produ

(~1.1 r

0.245

0.24

0.235

CC: 3 jets (~57 pb)

CC: $H \rightarrow \overline{b}b$ (BR - 0.7 at M_H=120GeV)

and α_e : transform the LHC facility into a

genuine Higgs

factory

 σ_{Higgs} in polarised ee = 250–300 fb at \sqrt{s} = 250–500 GeV

Higgs in e^-p	CC - LHeC	NC - LHeC	CC - FHeC
Polarisation	-0.8	-0.8	-0.8
Luminosity [ab ⁻¹]	1	1	5
Cross Section [fb]	196	25	850
Decay BrFractio	n N_{CC}^{H}	N_{NC}^{H}	N_{CC}^{H}
$H \rightarrow b\overline{b}$ 0.577	113 100	13 900	$2\ 450\ 000$
$H \rightarrow c\overline{c}$ 0.029	5 700	700	123 000
$H \rightarrow \tau^+ \tau^- 0.063$	12 350	1 600	270 000
$H \rightarrow \mu\mu$ 0.0002	2 50	5	1 000
$H \rightarrow 4l$ 0.0001	3 30	3	550
$H \rightarrow 2l2\nu$ 0.0100	2 080	250	45 000
$H \rightarrow gg$ 0.086	16 850	2 050	365 000
$H \rightarrow WW = 0.215$	42 100	5 150	915 000
$H \rightarrow ZZ$ 0.0264	5 200	600	110 000
$H \rightarrow \gamma \gamma$ 0.0022	8 450	60	10 000
$H \rightarrow Z\gamma$ 0.001	54 300	40	6 500

Large Higgs production cross section at LHeC similar to ILC Enhancement through polarised e⁻ CC channel Sizeable rates for WW and ZZ and $\tau\tau$ and cc $H \rightarrow bb$ studied in CDR

high signal / background ~ 1-2 [LHC: ~0.01] [LHC: 150 @ 10³⁴] low pile-up ~ 0.1 ~1% coupling precision with 1 ab^{-1}

Partons from HERA and

fixed target DIS

Plot courtesy of Max Klein

0.8 0.9

PPAP Community Meeting - RA

Next Steps

DG invited International Advisory Committee be formed: Representation from major international labs, experiments & theory community

Mandate 2014-2017:

- Advise LHeC Coordination group / CERN directorate on ep / eA developments
- Develop CDR for ERL test facility at CERN
- Assist building international case for ep detector / accelerator development

CERN to help in development towards ep machine using LHC / FCC protons & ions CERN mid-term plan will fund 2 s/c RF cryo modules 802 MHz (LHeC/FCC/MESA) ERL test facility proposal being developed in conjunction with JLAB / Mainz / BNL / IHEP & ... - build experience of ERLs at CERN

Herwig Schopper (CERN) – Chair Guido Altarelli (Rome) Sergio Bertolucci (CERN) Frederick Bordry (CERN) Stan Brodsky (SLAC) Oliver Brüning (CERN) Hesheng Chen (IHEP Beijing) Andrew Hutton (Jefferson Lab) Young-Kee Kim (Chicago) Max Klein (Liverpool) Victor A Matveev (JINR Dubna) Shin-Ichi Kurokawa (Tsukuba) Leandro Nisati (Rome) Leonid Rivkin (Lausanne) Jurgen Schukraft (CERN) Achille Stocchi (LAL Orsay) John Womersley (STFC)

Next steps:

near-term - update LHeC physics prospects with more detailed studies mid-term - performance of an optimised and fully simulated detector

> LHeC / FCC-he project puts ep physics at the energy / intensity frontier Exploits the investment in hadron beams already made Allows a complete exploration of the TeV scale with pp & ee Bold project demands further study / consideration & has UK leadership

		10 ³⁴	103	3
10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16	1	1
Normalized emittance $\gamma \epsilon_{x,y}$ [µm]	2.5	20	3.75	50
Beta Funtion $\beta^*_{x,y}$ [m]	0.05	0.10	0.1	0.12
rms Beam size $\sigma^*_{x,y}$ [µm]	4	4	7	7
rms Beam divergence $\sigma \Box^*_{x,y}$ [µrad]	80	40	70	58
Beam Current [mA]	1112	25	430 (860)	6.6
Bunch Spacing [ns]	25	25	25 (50)	25 (50)
Bunch Population	2.2*10 ¹¹	4*10 ⁹	1.7*10 ¹¹	(1*10 ⁹) 2*10 ⁹
Bunch charge [nC]	35	0.64	27	(0.16) 0.32

Comparison of HERAPDF 1.5 & 2.0

Kinematic Range

Jet Data Constraints

gluon at $Q^2 = 2 \text{ GeV}^2$

Tevatron jets consistent with DIS Test of factorisation:

- compare ep with pp
- gluon contributes at LO but in DIS only in NLO
- pp jets probe higher scales & require pQCD evolution via RGE

Moderate uncertainty reduction from TeVatron jets Jet data help constrain α_s

H →bb

20

H→bb

CC BG

NC BG

< b, c, t⁺ , c, t⁺...

 σ_{Higgs} in ee ~300 fb

Higgs in e^-p

$\sqrt{s} = 1.3^{-1}$	TeV
CC - $LHeC$	NC - LHeC
-0.8	-0.8

		0	V,e
	\sqrt{s} = 3.5 TeV	$\sqrt{s} = 250$	GeV (b,c
,	CC - FHeC	ee	WiZZ b, c
;	-0.8	-0.8 / +0.3	
	5	1	
•	850	300	
	N_{CC}^{H}		
)	$2\ 450\ 000$	231 000	

					••
Polarisation		-0.8	-0.8	-0.8	-0.8 / +0.3
Luminosity	$[ab^{-1}]$	1	1	5	1
Cross Section	n [fb]	196	25	850	300
Decay Br	Fraction	N_{CC}^{H}	N_{NC}^{H}	N_{CC}^{H}	
$H \rightarrow b\overline{b}$	0.577	113 100	13 900	$2\ 450\ 000$	231,000
$H \to c\overline{c}$	0.029	5 700	700	123 000	12,750
$H \rightarrow \tau^+ \tau^-$	0.063	12 350	1 600	270 000	14,000
$H \rightarrow \mu \mu$	0.00022	50	5	1 000	
$H \rightarrow 4l$	0.00013	30	3	550	
$H\to 2l2\nu$	0.0106	2 080	250	$45\ 000$	
$H \rightarrow gg$	0.086	16 850	$2\ 050$	365 000	
$H \rightarrow WW$	0.215	42 100	5 150	915 000	53,100
$H \rightarrow ZZ$	0.0264	5 200	600	110 000	3 000
$H \rightarrow \gamma \gamma$	0.00228	450	60	10 000	2,000
$H \rightarrow Z\gamma$	0.00154	300	40	6 500	

<u>arXiv:1306.6352</u>

Approximate yields from polarised ee machine at $\mathcal{L} = 10^{34}$ and $\sqrt{s} = 250$ GeV